
Technische Universität München

Fakultät für Informatik

Lehrstuhl für Echtzeitsysteme und Robotik

Efficient Geometric Predicates for

Integrated Task and Motion Planning

Andre K. Gaschler

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Echtzeitsysteme und Robotik

Efficient Geometric Predicates for

Integrated Task and Motion Planning

Andre K. Gaschler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-

sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Alois Knoll

2. Prof. Oussama Khatib, Stanford University, USA

Die Dissertation wurde am 24.09.2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 30.03.2016 angenommen.

Copyright 2015, Andre Gaschler, alle Rechte vorbehalten.

Bildnachweis: Abbildung 1.1, Seite 2, Werk ist gemeinfrei, Digitalisierung von SLUB Dresden unter

Lizenz CC-BY-SA 4.0. Abbildung 6.4, Seite 109, mit freundlicher Genehmigung von S. Nogina. Alle

anderen Abbildungen wurden vom Verfasser erstellt.

Abstract

“Can’t your robot do this for you?” People have great expectations of

what tasks robots can accomplish and have been dreaming of intelligent

machines that can understand, perceive, and manipulate. While today’s

robot systems may not quite fulfill this dream, research in individual

areas on automated planning, path planning, and robot control has made

substantial progress. However, integrating these components does not

make an intelligent robot. In particular, task planning cannot be solved

as a problem separate from motion planning.

This thesis approaches the integrated task and motion planning prob-

lem from the geometric side. Its main goal is to develop a powerful

and efficient interface for the symbolic task planner to query and sam-

ple in a continuous-valued, geometric world. To provide more efficient

queries without risking collisions, new geometric predicates are proposed

that operate on single-sided, ε-precise approximations of the geometry.

These single-sided approximations are generated by our new bounding

mesh algorithm, which iteratively decimates edges to generate simpler

meshes that either enclose or are enclosed by the original geometry. Edge

decimations are guided by a quadratic cost function with linear inequal-

ities. Several cost functions are evaluated on a set of robot geometries

and further shapes, and experiments indicate that bounding mesh ap-

proximation reduces vertex counts by a factor of 10–20 at a good pre-

cision. Integration with a convex segmentation algorithm then allows a

bounding convex decomposition of the scene, suitable for efficient colli-

sion checking routines. Effectively, bounded geometric predicates allow

faster collision and inclusion queries, but never overlook a collision or

a non-inclusion. Besides these queries, an approach to sampling with

geometric constraints is developed to provide a mapping from symbolic

preconditions to feasible geometric states. Constraints may be formu-

lated as coincidence, parallelism, and distance relations between shapes

of robots and objects, and are solved by projection sampling to cover the

constraint space.

i

All geometric functions are integrated with a knowledge-level automated

planner that can reason under discrete uncertainty. In contrast to closed-

world planning, discrete uncertainty planning can model gain and loss of

knowledge and generate branched plans with run-time sensing actions.

The integration leads to the new Knowledge-level Action and Bounding

Geometry Motion planner (in short, KABouM), which solves and ex-

ecutes tasks that can be specified by concise domain definitions. The

overall approach is demonstrated and evaluated on different robot sys-

tems, including tasks with branched plans, sensing actions, assembly

actions, and bimanual manipulation. Evaluation includes a complex as-

sembly scenario with seven types of transfer and manipulation actions

whose solution requires multi-robot collision checking and synthesis of

re-grasping and bimanual manipulation actions, which clearly cannot be

solved without hybrid search spaces. Experiments show that bounded

geometric predicates increase the efficiency of task and motion planning.

Besides direct applications to intelligent robot control, which are illus-

trated by several robot demonstrations, bounding mesh approximation

and bounding convex decomposition apply more generally to real-time

collision checking, online control schemes, efficient distance computation,

and further algorithms in computer geometry.

ii

Zusammenfassung

”
Kann das nicht dein Roboter für dich erledigen?“ Viele Menschen haben

hohe Erwartungen an die Fähigkeiten von Robotern, und der Traum von

der intelligent denkenden und handelnden Maschine reicht weit zurück.

Obwohl die heutigen Robotersysteme diese Hoffnungen nicht ganz erfül-

len können, hat die Forschung doch erhebliche Fortschritte in den Teil-

bereichen der symbolischen Planung, der Bahnplanung und der Robo-

tersteuerung erbracht. Die Integration dieser Komponenten allein liefert

jedoch kein intelligentes Robotersystem, da insbesondere die Aufgaben-

planung nicht getrennt von der Bahnplanung gelöst werden kann.

Diese Dissertation nähert sich dem Problem der integrierten Aufgaben-

und Bahnplanung von der geometrischen Seite. Kernziel ist dabei die

Entwicklung einer leistungsfähigen und effizienten Schnittstelle, die der

diskreten Aufgabenplanung Abfragen über den geometrischen Zustand

und die zufällige Erstellung geometrischer Zustände unter Nebenbedin-

gungen ermöglicht. Für die effiziente Umsetzung dieser Abfragen unter

Ausschluss von Kollisionen wird eine neue Art geometrischer Prädikate

eingeführt, die durch eine einseitige Approximation der Geometrie de-

finiert ist. Diese Approximation wird durch den neuen Bounding-Mesh-

Algorithmus erstellt, der iterativ Kanten dezimiert und vereinfachte Drei-

ecksnetze erzeugt, die die ursprüngliche Geometrie umschreiben oder

darin einbeschrieben sind. Gesteuert wird die Kantendezimierung von

einer quadratischen Optimierungsfunktion mit linearen Ungleichungen.

Mehrere Optimierungsfunktionen werden auf einer Reihe von Roboter-

geometrien und anderen Formen experimentell miteinander verglichen.

Die Ergebnisse zeigen, dass der Bounding-Mesh-Algorithmus die Zahl

der Ecken bei guter Näherung um einen Faktor von 10 bis 20 reduzieren

kann. In Verbindung mit einem Algorithmus zur konvexen Zerlegung ist

die umschreibende konvexe Zerlegung einer Szene möglich, die sich somit

für effiziente Kollisionsabfragen eignet. Damit erzielen die eingeführten

geometrischen Prädikate schnellere Kollisions- und Inklusionsabfragen,

ohne dass Kollisionen oder Nicht-Inklusionen übersehen werden. Neben

iii

den geometrischen Abfragen wird ein Verfahren zur zufälligen Auswahl

geometrischer Zustände unter Nebenbedingungen entwickelt, um eine

Abbildung von symbolischen Bedingungen zu geometrischen Zuständen

zu schaffen. Nebenbedingungen können in Form von Überschneidungs-,

Parallelitäts- und Abstandsbeziehungen zwischen Formmerkmalen in Ro-

boter und Objekt gegeben werden. Zur Lösung werden zufällige Zustände

durch iterative Minimierung einer Kostenfunktion auf den Lösungsraum

projiziert.

Alle geometrischen Funktionen werden mit einem wissensbasierten sym-

bolischen Planer integriert, der in Anwesenheit diskreter Unsicherheit

schlussfolgern kann. Dieser kann Zugewinn und Verlust von Wissen di-

rekt modellieren und somit bedingte Pläne erzeugen, die Laufzeit-Sensor-

ergebnissen entsprechend verzweigen. Die Integration führt schließlich

zu dem neuen
”
KABouM“-System, das kompakt definierte Probleme

selbstständig lösen und ausführen kann. Der gesamte Ansatz wird auf

verschiedenen Robotersystemen demonstriert und ausgewertet, einschließ-

lich Aufgaben mit verzweigten Plänen und Sensoraktionen, Montage-

aktionen sowie der Manipulation mit beiden Roboterarmen. Die Aus-

wertung schließt ein komplexes Montageszenario mit sieben Aktions-

typen zur Übergabe und Handhabung ein, dessen Lösung die Kollisi-

onsüberprüfung zwischen mehreren Robotern und die Synthese von Ak-

tionen zum Umgreifen und zur beidhändigen Handhabung erfordert, wel-

che daher nur in einem hybriden Suchraum gelingen kann. Experimen-

telle Ergebnisse zeigen, dass die eingeführten geometrischen Prädikate

die Effizienz der integrierten Aufgaben- und Bahnplanung steigern. Ne-

ben den direkten Anwendungen zur intelligenten Robotersteuerung, die

in mehreren Demonstrationen aufgezeigt werden, sind die Algorithmen

zur Umschreibung und umschreibenden konvexen Zerlegung von Drei-

ecksnetzen in der Echtzeit-Kollisionsverhütung, Echtzeit-Regelung, Ab-

standsberechnung und in Verfahren der algorithmischen Geometrie ein-

setzbar.

iv

Acknowledgements

First of all, I would like to thank my adviser Alois Knoll for his guidance

through all stages of my study and research work. I am grateful for his

constant support, ideas, and the opportunities he has created for me,

not only in the field of robotics. He has been encouraging me to new

ventures long before I started my doctoral studies.

I am thankful to my second reviewer Oussama Khatib for his valuable

advice, for his hospitality, and for giving me the opportunity to conduct

several experiments in his lab. Oussama convinced me to develop my

approach further in an important way.

Special thanks to Ronald Petrick, Markus Rickert, and Manuel Giuliani,

without whom this thesis would not be possible, and to Torsten Kröger

for being a competent discussion partner and a friendly host during my

stays in Stanford. Many thanks to Mary Ellen Foster, Hauke Stähle,

Sören Jentzsch, Quirin Fischer, Ingmar Kessler, and all members of the

fortiss robotics group.

Finally, I want to thank my parents and grandparents for their continu-

ous support, and Ursula for being there.

v

Contents

1 Introduction 1

1.1 Integrated Task and Motion Planning 3

1.2 Scope of this Work . 4

1.3 Applications . 7

1.4 Contribution . 8

1.5 Structure . 10

2 Related Work 13

2.1 Background . 14

2.2 Related Work in Task and Motion Planning 15

2.3 Task and Motion Planning Systems 18

3 Integrated Task and Motion Planning 25

3.1 Problem Definition . 26

3.2 Related Work in Symbolic Planning 28

3.3 Approach to Integrated Task and Motion Planning 30

3.3.1 Planning with Knowledge and Sensing 31

3.3.2 Interface to Robotics-specific Functions 33

3.3.3 Force Sensing Scenario . 34

3.3.4 Conclusion . 38

4 Bounding Meshes for Efficient Geometric Predicates 41

4.1 Bounded Geometric Predicates . 42

4.2 Bounding Meshes . 45

4.2.1 Level-of-Detail Models . 46

4.2.2 Single-Sided Mesh Approximation 48

4.3 Bounding Mesh Generation . 50

4.3.1 Bounding Mesh Edge Contraction 51

4.3.2 Quadric Error Metric . 52

vii

4.3.3 Quadric Cost for Compound Shapes 54

4.3.4 Optimal Edge Contraction . 56

4.3.5 Bounding Mesh Algorithm . 60

4.4 Bounding Sets of Convex Polyhedra 67

4.4.1 Algorithms for Convex Decomposition 68

4.4.2 Bounding Convex Decomposition 69

4.4.3 Evaluation . 70

4.5 Bounding Swept Volumes . 77

5 Sampling with Geometric Constraints 83

5.1 Related Work . 85

5.2 Geometric Constraint Formulation 88

5.2.1 Constrained Sampling Problem 89

5.2.2 Design of Geometric Cost Functions 91

5.2.3 Completeness of Constrained Sampling 92

5.2.4 Evaluation of the Sampling Algorithm 93

6 Implementation and Evaluation 97

6.1 System Implementation . 98

6.1.1 Geometric Pre-processing . 98

6.1.2 Components for Planning and Symbolic–Geometric Mapping 99

6.1.3 Run-time Components . 103

6.2 System Evaluation . 103

6.2.1 Bimanual Pick-and-Place Scenarios 104

6.2.2 Stacked n Objects Scenario 109

6.2.3 Bimanual Assembly Scenario 115

6.2.4 Conclusion . 121

7 Conclusion 123

7.1 Contribution . 124

7.2 Future Work . 125

7.3 Further Applications . 127

A Technical Definitions and Proofs 129

A.1 Definition of the 3D Quadric Metric 129

A.1.1 Distances to Geometric Primitives 130

A.1.2 Operations on Quadric Metrics 130

A.2 Convexity Invariance of the Bounding Mesh Algorithm 132

A.3 Closed-form Inverse Kinematics . 133

viii

ix

B Bounding Mesh Evaluation 135

B.1 Additional Bounding Mesh Examples 136

B.2 Evaluation of Cost Functions for Bounding Mesh Decimation 138

Bibliography 145

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: “The chess player in the process of playing.” (Der Schachspieler im Spiele
begriffen.) Copper engraving by Windisch, 1783, scan by SLUB Dresden, CC-BY-SA 4.0.

The dream of creating an intelligent robot has existed for a long time in human

history. The idea of an autonomous, intelligent agent is not only motivated by the

prospect of work or service being done by a machine, but is also an interesting field

of research. An example of this in history is the “Mechanical Turk” in the late 18th

century, constructed by the Hungarian Wolfgang von Kempelen [1]. This mechanism

consisted of a humanoid that could apparently move chess pieces on a board and

even play strong games against human opponents (Figure 1.1). Even though this

“artificial” chess player was only an elaborate illusion, operated by a skilled human

player hidden inside the machine, the illusion was at least a visionary one. The

audience believed in this intelligent system, a system that has now become feasible

with today’s technology in robot manipulation, artificial intelligence, and computer

vision. Most of the 18th century audience was fooled by the Mechanical Turk and

believed in its abilities to move chess pieces with a mechanical hand and automati-

cally plan strong chess moves. Today’s technology has finally come to a state where

1.1. INTEGRATED TASK AND MOTION PLANNING 3

visual object recognition, robot grasping and manipulation, and automated plan-

ning are very real, and allows us to build a robotic chess player that picks and

places pieces autonomously, which was recently demonstrated by Matuszek et al. [2]

among others. Not only was the 18th century audience amazed by the prospects and

opportunities of intelligent robot manipulation, people today are also fascinated by

intelligent robotics. The Mechanical Turk is an example of a long time technological

dream to build an intelligent, humanoid robot with remarkable or even superhuman

reasoning and manipulation skills.

The motivation of this thesis is based on the fact that, while most of the tech-

nology necessary to build an intelligent robot is now available, it is still surprisingly

hard to formulate and solve generic robot problems, and have robots perform use-

ful tasks and services. This thesis seeks to define and solve generic robot tasks, in

contrast to a single-purpose chess playing robot, which can be designed without any

notion of integrated task and motion planning. Integrated task and motion plan-

ning combines symbolic and geometric searches to solve complex, generic problems.

Our approach uses robot task and motion planning for solving intricate problems in

service and manufacturing. Unlike simple automation tasks, real service and man-

ufacturing scenarios require a robot to perform various types of actions under very

complex geometric and kinematic constraints.

1.1 Integrated Task and Motion Planning

The fundamental idea of integrated task and motion planning is to formulate all

of a robot’s abstract actions together with their geometric constraints and effects

in a well-defined and concise language, and then generate plans automatically in

a hybrid search. Only in an integrated symbolic and geometric search, a planner

can be sure to find viable actions with collision-free paths. With this abstract

task and motion planning approach, seemingly complex problems, which typically

arise in service and manufacturing scenarios, can be formulated and solved in a

generic way. In addition, domain descriptions can be stored separately from the

planning system. When the task is defined separately from the planning framework,

intelligent robots can be developed that solve the wide range of scenarios that are

prevalent in the real world. Since the problem is stated on the task level, generic

planners can solve a wide range of problems over different types of robots, tasks, and

services. Figure 1.2 illustrates a number of scenarios, all of which can be given as a

domain definition to the same planner. These examples include different kinematics

from bimanual robots to mobile manipulators and tasks that require sensing and

4 CHAPTER 1. INTRODUCTION

knowledge-gathering actions.

Another argument for reasoning on the task planning level of abstraction can be

made by the way humans think, communicate, and expect robots to interact with

them. Humans commonly reason about symbolic actions, knowledge, and geometry

in order to fulfill complex, but ordinary tasks; this high-level cognitive function

is central to most activities. Furthermore, they can formulate their thoughts to

express their knowledge to others or cooperate with others in joint actions. These

considerations essentially boil down to two results: First, it is necessary for intelligent

robots to perform abstract reasoning and planning on a comparable level in order to

operate in a world made by humans. Second, robots that fulfill service or cooperative

tasks, or otherwise engage in interactions, are required to understand and express

high-level statements in an interaction, formulated in terms of human concepts of

geometry and action.

Building a robot task and motion planning system that can plan and act is

not a software integration problem. Although such a system requires algorithms

from several areas, including symbolic planning, perception, collision checking, path

planning, trajectory generation, and execution monitoring, and integration is surely

part of the effort, symbolic reasoning and geometric planning must be combined

carefully to solve real tasks in a hybrid search. The underlying problem of task

and motion planning is that robots need to reason about actions on an abstract,

symbolic level in order to achieve a symbolic goal, but these actions have intricate

preconditions and effects in the continuous-valued geometric world. Importantly, a

two-level architecture, where an automated planner solves a symbolic plan that is

later refined by motion planning, will fail in all but the simplest scenarios [3, 4].

1.2 Scope of this Work

In terms of research questions, this work seeks to answer and is driven by two

questions, which are concerned with the geometric side of robot task and motion

planning.

Which geometric predicate and sampling functions should motion plan-

ning provide to symbolic planning such that real problems can be solved?

This first question builds on the insight that the symbolic–geometric interface is key

to solve real, hard task and motion planning problems [3]. This interface estab-

lishes a mapping between symbolic and geometric states. Therefore, the interface

both needs to include predicate functions that abstract from a geometric state and

1.2. SCOPE OF THIS WORK 5

(a) Dual-arm Mitsubishi setup, used in the Bartender and Bimanual Circular Re-
arrange scenarios.

(b) Compliant LBR4 robot, used in the Force Sensing scenario.

(c) Mobile manipulator of a Katana robot on a Robotino base, used in the Stacked n
Objects scenario.

Figure 1.2: A robot task and motion planner accepts a domain definition with actions of
symbolic and geometric preconditions and effects, and a symbolic goal. The search algorithm
of the planner is independent from the specific domain, and can therefore solve a wide
range of problems, including bimanual kinematics and mobile manipulation. A selection of
scenarios is evaluated on real robot setups (Chapter 6). In the rendered views, movable
objects are highlighted in blue.

6 CHAPTER 1. INTRODUCTION

resolve symbolic predicates, and sampling functions that refine a symbolic state, giv-

ing a geometric instance that fulfills symbolic predicates. Thus, the answer to the

question about the geometric interface needs to discuss both sides of the symbolic–

geometric mapping, provide a set of functions sufficient to solve interesting domains,

and demonstrate its effectiveness in real-world examples.

How can geometric predicates in task and motion planning be made more

efficient, allowing reasonable approximation of the geometric world?

This second question is concerned with the efficiency of such geometric predicates.

Clearly, a robot task and motion planner must cover search spaces larger than a con-

ventional path planner, as the geometric configuration space includes object poses,

and may include multiple kinematics. Therefore, the efficiency of a geometric predi-

cate has great impact on the overall efficiency of the planning system. By reasonable

approximation, we mean solutions that do not affect the planner’s success to real-

world scenarios, either by choosing good heuristics, approximations with control-

lable precision, or allowing the planner to trade precision for efficiency throughout

the search. Furthermore, results of a geometric predicate have different importance

to the planner, and approximation may take advantage of asymmetric requirements

in precision. An example for such asymmetric tolerance is a collision check, because

missing a collision-free path is not as serious as accidentally colliding with an obsta-

cle. A geometric predicate may therefore take advantage of an approximation that

guarantees exactness on one side, but may be less precise on the other side. In order

to answer this second research question, a framework for geometric approximation is

derived that exploits asymmetric tolerances of geometric predicates in robot tasks,

and this new type of geometric predicates is implemented and evaluated.

Constraints to the Scope of this Work

This work is concerned with the geometric interface for integrated task and motion

planning, in particular with providing efficient geometric predicates. We admit that

task and motion planning is a rather vague term. In particular, the word “task”

could easily be confused with its different meanings as real-time tasks in robot

control, the task space of a manipulator, or motion primitives for task-level robot

programming. Our notion of a task planner is an automated planner that generates

a sequence of symbolic actions to achieve a given goal in a symbolic domain. To

specify the scope of this work more clearly, we would like to mention which topics,

although clearly related to intelligent robotics, are not within the scope of this work.

1.3. APPLICATIONS 7

Even though integrated task and motion planning clearly involves symbolic and

geometric planning, this work is not about developing a new symbolic planner or a

new path planning algorithm. Both artificial intelligence and robotics researchers

have been developing planners for these two problems for decades, and our contri-

bution is rather to integrate both approaches and develop new geometric predicates

to solve more complex scenarios. Furthermore, our approach is different from task-

level programming, robot skills, or motion primitives. While these approaches do

raise the level of abstraction and implement robot systems that perform multiple

actions to achieve a certain goal, they are mostly concerned with reusable and flex-

ible robot programs. In contrast, we attempt a hybrid search in the full space of

actions and paths, with tight integration of symbolic and geometric reasoning. Our

motivation for integrated task and motion planning is to allow robots plan and act

autonomously in a given domain, with no rules given how a task should be fulfilled.

1.3 Applications

The general concept of robot task and motion planning is to provide an abstract

problem definition and automatically solve for a sequence of actions for a robot to

achieve this task, using generic planning independent from a specific problem. This

procedure is designed to solve difficult goals in complex geometries following a task-

level description of the domain. It is therefore suitable to applications for service

robots, complex manufacturing and construction tasks, and tele-operation of remote

robots, where communication is limited to task-level control.

Service tasks require different types of actions, which may include motion, ma-

nipulation, sensing, and dialogue with humans. A robot task planner can reason

in such a complex symbolic domain, plan actions with intricate dependencies, and

solve for sequences of actions that fulfill a goal criterion of multiple conditions. To-

gether with motion planning in complex domains, the ability to coordinate other

types of actions, including speech and dialogue, makes robot task planning suitable

for developing service robot systems. Motion planning in complex domains is a par-

ticular concern in manufacturing and construction tasks, where tolerances are low,

space is limited, and manipulators are heavy and stiff. In industrial manufacturing,

production needs to become more flexible, provide variants and customization, and

minimize programming and setup times. Only when manufacturing processes are

described on the task level, automation can achieve this flexibility without user inter-

vention. Robot task and motion planning can automatically generate efficient plans

to solve these tasks. Furthermore, it can take advantage of complex re-grasping

8 CHAPTER 1. INTRODUCTION

actions, bimanual manipulation, and coordinate collision-free motion of multiple

robots and objects in a work cell. Clearly, these actions would be too complex

or too error-prone to be programmed manually. Besides service and manufacturing

robots, planning on the task level also applies to tele-operation of remote robots and

robots in space, which need to act autonomously due to limited communication.

1.4 Contribution

In general, we approach the task and motion planning problem from the geometric

side. Most authors see the integration of symbolic and geometric planning as the

key challenge in robot task planning [3, 5]. Our work is focused on the geometric

predicates provided to the symbolic planner; its main contributions beyond the state

of the art are the introduction of single-sided approximate geometric predicates and

their integration in a knowledge-level planning system.

In particular, we propose a set of geometric predicates that use a new, single-

sided ε-precise approximation. Single-sided approximation takes advantage of the

asymmetric tolerances required for collision and inclusion predicates. Collision pred-

icates evaluate with zero tolerance for collisions, and at a given precision ε in case

of non-collisions; the opposite holds for inclusion predicates. As a result, geometric

predicates are more efficient without affecting the correctness of the generated plans,

which we can show in an experiment. To generate a single-sided approximation of a

geometric mesh, we propose the bounding mesh algorithm, which may generally be

applied to computer geometry. In conjunction with convex decomposition, bounding

mesh operations generate a bounding convex decomposition of the scene geometry,

which allows efficient evaluation of the above predicates.

Besides this specific contribution of single-sided approximate geometric predi-

cates, we also progress in the integration of task and motion planning systems that

handle discrete uncertainty. Using an automated planner that operates on the knowl-

edge level, we can model actions where information is gained or lost. This approach

provides a well-defined formulation of robot sensing actions, allows reasoning under

discrete uncertainty, and can generate plans with branches. Finally, our integration

efforts lead us to the new Knowledge-level Action and Bounding Geometry Motion

planner (KABouM), and we can demonstrate its effectiveness in a wide range of

scenarios. As part of the evaluation, we solve scenarios that require bimanual ma-

nipulation, sequences of re-grasps, and complex assembly actions. Furthermore, we

demonstrate a selection of problem instances on real robot systems.

1.4. CONTRIBUTION 9

Publications

The research leading to this thesis has in part been presented at several conferences

and workshops, with the most relevant publications being listed in the following.

• A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, A. Knoll, KVP: A

Knowledge of Volumes Approach to Robot Task Planning, in: IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 2013, pp.

202–208

• A. Gaschler, R. P. A. Petrick, T. Kröger, A. Knoll, O. Khatib, Robot Task

Planning with Contingencies for Run-time Sensing, in: IEEE International

Conference on Robotics and Automation (ICRA) Workshop on Combining

Task and Motion Planning, 2013

• A. Gaschler, R. P. A. Petrick, T. Kröger, O. Khatib, A. Knoll, Robot Task

and Motion Planning with Sets of Convex Polyhedra, in: Robotics: Science

and Systems (RSS) Workshop on Combined Robot Motion Planning and AI

Planning for Practical Applications, 2013

• A. Gaschler, S. Nogina, R. P. A. Petrick, A. Knoll, Planning perception and

action for cognitive mobile manipulators, in: SPIE Volume 9025 – Intelligent

Robots and Computer Vision XXXI: Algorithms and Techniques, 2014

• R. P. A. Petrick, A. Gaschler, Extending Knowledge-Level Contingent Plan-

ning to Robot Task Planning, in: International Conference on Automated Plan-

ning and Scheduling (ICAPS) Workshop on Planning and Robotics (PlanRob),

2014

• A. Gaschler, I. Kessler, R. P. A. Petrick, A. Knoll, Extending the Knowl-

edge of Volumes Approach to Robot Task Planning with Efficient Geometric

Predicates, in: IEEE International Conference on Robotics and Automation

(ICRA), 2015, pp. 3061–3066

• A. Gaschler, Q. Fischer, A. Knoll, The Bounding Mesh Algorithm, Tech. Rep.

TUM-I1522, Technische Universität München, Germany (June 2015)

Earlier versions of the KABouM task and motion planner, previously named

KVP, the “Knowledge of Volumes” Planner, were described in conference [6, 9] and

workshop papers [7, 8, 10, 13], including discussions of the Force Sensing and

Bartender [6] scenarios, and an early version of the Stacked n Objects [9]

scenario. In contrast, the more complex Bimanual Circular Rearrange and

http://dx.doi.org/10.1109/IROS.2013.6696354
http://dx.doi.org/10.1109/IROS.2013.6696354
http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://mediatum.ub.tum.de/node?id=1255722

10 CHAPTER 1. INTRODUCTION

Bimanual Assembly scenarios are novel to this work and the KABouM planner.

Concerning the bounding mesh algorithm, a brief technical note was previously pub-

lished [12] and the idea of single-sided approximation was mentioned in a conference

paper [11]. An earlier version of the approach to sampling with geometric constraints

was covered by a conference paper [14]. All other work on bounded geometric pred-

icates, bounding meshes, and bounding convex decomposition, including in-depth

discussions and evaluation, has not been published before. More detailed remarks

on earlier publications are made in the related work discussions of the respective

chapters of this work.

1.5 Structure

This thesis is structured as follows. In Chapter 2, we will discuss related works in

integrated task and motion planning, as well as relevant approaches from manipu-

lation, motion planning, and further areas. In our discussion, we will situate our

approach with respect to related works.

Geometric

Predicate

Evaluation

Sampling with

Geometric

Constraints

Bounding Mesh

Simplification

Bounding Convex

Decomposition

Plan

Execution

Sensing
Domain

Definition
Symbolic

Planner

Symbolic–Geometric

Mapping

Chapter 4

Chapter 3

Chapter 5 Chapter 6

Collision

Checking
Kinematics

Trajectory

Generation

Robot

Control

Figure 1.3: Chapter overview in relation to the software architecture of the KABouM
planner.

The sequence of the main chapters (3–6) loosely follows our planning system

architecture from domain definition to plan execution, as depicted in Figure 1.3. In

Chapter 3, we will provide a formal definition of the robot task and motion planning

problem. We will then develop our approach starting from the symbolic task plan-

ning level, compare automated planning systems, and discuss the solution of a simple

1.5. STRUCTURE 11

problem that permits separate symbolic and geometric planning. In Chapter 4, we

will introduce geometric predicates as an interface to map from geometric states to

abstract, symbolic states. To make their evaluation more efficient, we will define

a set of bounded geometric predicates on a single-sided, ε-precise approximation of

the geometry. We will then derive the bounding mesh algorithm to generate such

single-sided approximations of triangle meshes. To complete our set of geometric

predicates, we will develop an algorithm for bounding convex decomposition, and

provide an efficient collision checking procedure for swept volumes of robot motions.

In Chapter 5, we will develop a procedure to sample geometric states that fulfill

symbolic conditions. We will formulate a task-level approach to set up geometric

constraints, and develop a sampling method that can cover constraint manifolds. To

complete the integration, we will describe the components of our new Knowledge-

level Action and Bounding Geometry Motion planner (KABouM) in Chapter 6,

and evaluate its effectiveness in several scenarios, covering bimanual manipulation,

combinatorially intricate rearrangement, and complex assembly tasks. Finally, we

will summarize our contribution and discuss possible application areas and future

developments in Chapter 7.

Chapter 2

Related Work

13

14 CHAPTER 2. RELATED WORK

For robots to solve real-world tasks, they need to reason about both symbolic ac-

tions and continuous-valued paths in the geometric world. In this chapter, we discuss

works related to the general robot task planning problem and systems that integrate

task and motion planning. Of course, the individual problems of automated plan-

ning, geometric predicates, and geometric sampling require more detailed discussion

and we will survey the literature on these topics in their respective chapters.

2.1 Background

Research in automated planning started in the late 1960s, at a time when artificial

intelligence was sprinting forward and researchers were driven by great optimism

to build intelligent machines [15, pp. 18–21]. From the early days on, automated

planning was motivated by and applied to controlling autonomous robots. The first

intelligent mobile robot, Shakey, was demonstrated to the public in 1969 [16], and

could navigate itself, avoid obstacles, and push objects to achieve a given task. Both

its automated planner and its pathfinding components were seminal to research in

symbolic planning and robot motion planning since then; their combination is con-

sidered the first task and motion planning system. The Shakey system included

Fikes and Nilsson’s STRIPS planner [17], which is regarded the first major planning

system [15, p. 393]. As an automated planner, it solves a symbolic task, defined by

a goal criterion, and generates a valid sequence of actions, which fulfill preconditions

and entail effects. Using a symbolic planner, the Shakey robot could plan discrete

motion, such as moving from one room to another, and respect discrete geometric

constraints, such as the connectivity of rooms. After that, symbolic actions were

refined by a path planner and executed by the mobile platform. However, the sym-

bolic planner did not check geometric or kinematic constraints, but rather assumed

that all actions could be refined to valid motion paths.

Of course, considering kinematic and geometric constraints and effects is crucial

for solving the integrated task and motion planning problem. Only in very simple

scenarios, symbolic planning and motion planning can be separated; in more general

scenarios, a separated search would necessarily become incomplete. In real-world

problems, such as problems with movable obstacles, symbolic and geometric con-

straints tend to be entangled and cannot be solved independently [3]. In 1987, the

Handey system was described, which could plan manipulation actions of multiple

pick-and-place motions, given a task-level goal and full descriptions of kinematics

and geometry [18]. Although the Handey system mainly focused on collision-free

path planning, grasping, and manipulation, it also solved a number of discrete prob-

2.2. RELATED WORK IN TASK AND MOTION PLANNING 15

lems in order to accept task-level goals, plan re-grasping actions, choose stable object

poses, and coordinate multiple robots [19]. As a task-level manipulation planner,

it can be seen as an important milestone towards fully integrated task and motion

planning.

In the 1990s, both the automated planning and motion planning fields made rapid

progress, albeit with less interaction between the two fields. Modern algorithms

for collision-free path planning were devised to solve complex scenarios by random

sampling [20, 21]. However, only in the recent years, the integration of both symbolic

and geometric planning has gained new attention and robot task planning has again

become an active field of research [3, 22, 23]. One reason for the renewed interest

may be that task and motion planning systems have to rely on integrating algorithms

and heterogeneous software from different fields, and only recently these algorithms

have matured to reusable software components of the necessary planning, control,

and vision algorithms [24].

2.2 Related Work in Task and Motion Planning

In this young, second era of robot task planning, approaches from diverse research

directions have been proposed to combine symbolic and geometric planning. In our

discussion of integrated task and motion planning, we first attempt to categorize

related works with respect to their general approach, search strategy, and other

characteristics. Then, we summarize the most relevant works, roughly following a

chronological order. After that, we briefly categorize works from further related

fields that describe concepts applicable to task planning. Some techniques from ma-

nipulation planning, assembly planning, rearrangement planning, and multi-modal

motion planning apply to robot task planning as well, and we try to give a broad

overview on the literature.

Survey of Search Schemes

Task and motion planners all perform searches through symbolic and geometric

spaces. Search schemes may be progressions, directed forward from a starting con-

figuration to a goal [22, 3, 25, 26], regressions, directed backwards from a goal to

the start [23, 27], or may recurse from both start and goal [28]. Some task and

motion planners are built on general-purpose automated planners and allow generic

domain definitions and multiple types of actions [26, 4, 29, 25], for which the Plan-

ning Domain Definition Language (PDDL) is a frequent choice [4, 29]; others use

16 CHAPTER 2. RELATED WORK

pass symbolic

action

search refine

Geometric

Planner

Symbolic

Planner

(a) Two-step search, as described by Nils-
son [30] for the Shakey system.

search in

combined space

Symbolic-

Geometric

Planner

(b) Search in the product space, proposed
by Gravot, Cambon, and Alami [3] for the
aSyMov planner.

regression

search

generate symbol

fulfilling geometric

 Geometric

Planner

Symbolic

Hierarchical

Planner

(c) Hierarchical backward search with new
symbols describing geometric constraints,
as proposed by Kaelbling and Lozano-Pérez
[31].

search

apply

effects
evaluate

 Geometric

Planner

 Symbolic

Planner

(d) Symbols include geometric states, as
described by Dornhege et al. [22] and others
[26]. Our approach [6, 11] also follows this
strategy.

Figure 2.1: Search strategies for combining symbolic and geometric planning. Figure
inspired by [31, p. 11].

domain-specific planners, where adding new types of actions would require manual

implementation [23, 27].

Hybrid Search Strategies

An important strategy for a task and motion planner is how to explore discrete

and continuous search spaces, how to sample in the continuous space, and how to

coordinate search in both spaces. In order to categorize search strategies, one can

distinguish between symbolic searches that are mostly refined by a geometric planner

[32, 16, 26, 33] and geometric motion planners that are guided to fulfill a certain

task [25, 34].

2.2. RELATED WORK IN TASK AND MOTION PLANNING 17

Among these many different search strategies, we would like to put a few relevant

approaches in comparison. Figure 2.1 gives a schematic overview of four different

approaches to integrate task and motion planning. The simplest solution is to plan

only symbolical actions and later refine these by motion planning (Figure 2.1a), as

in the Shakey system [30]. Gravot, Cambon, and Alami [4] realize that a tighter

integration is required to achieve completeness, and search in the product space

of discrete and continuous states (Figure 2.1b). Kaelbling and Lozano-Pérez [31]

propose a hierarchical planner in the belief space, which can generate new symbols

that represent geometric constraints (Figure 2.1c). Several other robot task planners

search in the symbolic space and interface a geometric planner to evaluate precondi-

tions and apply effects (Figure 2.1d). The latter strategy is proposed by Dornhege

et al. [22]; our KABouM planner and several others [26, 35, 36] also belong to this

category.

Hierarchical Planning Strategies

In order to reduce the search space, some approaches propose to plan hierarchically,

to interleave planning and execution, or to generate semantic maps. Technically, this

leads to different, but related formulations of the robot task planning problem. As

opposed to flat planning, hierarchical task networks (HTNs) require a full definition

of primitive actions and levels of compound tasks, up to a goal task. The HTN

planning approach is taken by the state-abstracted HTN planner [37] and others

[38]. Interleaved planning and execution may greatly reduce the search space, since

it only needs to solve for the next action. Interleaved planning is proposed by several

authors [39, 40], and is suitable for domains with sensor perception, where the robot

should react to measurements. It may be complete for domains that contain only

reversible actions, among other criteria [40]. On the task level, semantic maps can

represent spatial relations and domain knowledge [41].

Incomplete Information and Uncertainty

For robots to plan their actions autonomously, they need to understand that an

action may require certain information and may result in gain or loss of informa-

tion. Only in simple cases, knowledge of information can be expressed by additional

predicates in the domain. Some task planners model uncertainty explicitly and can

reason with incomplete information [42, 23]. While planning with discrete uncer-

tainty can be achieved for generic domains [42], probabilistic uncertainty requires

more domain-specific implementation [23, 27]. Planners that model uncertainty can

generate information-gathering actions, such as robot sensing actions, as required

18 CHAPTER 2. RELATED WORK

by preconditions of other actions. This contrasts to planners where information-

gathering actions can only be defined as tasks themselves. Planning with uncertainty

is further necessary to generate contingency plans for actions with execution-time

effects.

Applications

Task and motion planning systems are developed with different purposes and ap-

plications in mind. Some of the intended applications are control of remote, au-

tonomous robots out of reach of human operators [43], provably correct behavior

of autonomous systems [44], and motion generation for the complex kinematics of

humanoid robots [34]. Of course, the main area of application is mobile manipula-

tion [4, 22, 23, 35, 26]. Some works are targeted towards service tasks that include

interaction with humans [45, 46, 47].

2.3 Task and Motion Planning Systems

Gravot, Cambon, and Alami are among the first to formalize a tight integration of

both symbolic and geometric searches [3, 4], with their first version described in 2003

[3]. Their planner, named aSyMov, searches in the product space of both symbolic

and geometric variables. The first version of aSyMov [3] is centered on generating

graphs for feasible robot–object transfer and robot transit motions in the configu-

ration space. For this, it generates a set of probabilistic roadmaps (PRM), with one

roadmap for each object’s location and for each combination of robot manipulator

and object locations. Their search identifies intersections between roadmaps, which

represent transitions between symbolic states, and finds a hybrid solution through

forward search. At each step, the aSyMov planner alternates between searching a

viable plan within the existing graph structure or exploring configuration subspaces

to increase its geometric knowledge.

In their extended version from 2009 [4], Cambon, Alami and Gravot introduce

a more generic formulation of the task planning problem, with problems defined in

the more expressive PDDL language. The extended planner uses several heuristics

that guide the search algorithm. Geometric search first tries to follow a relaxed,

purely symbolic solution, relaxed geometric problems with fewer movable obstacles

are solved, and search time is taken away from actions whose geometric evaluation

fails often. In their evaluation, they discuss a number of minimalistic, but intricate

examples that cannot be solved by independent task and motion planning. As

a result, they show that task and motion planning necessarily requires a hybrid

2.3. TASK AND MOTION PLANNING SYSTEMS 19

search. In general, Gravot, Cambon, and Alami’s aSyMov planner focuses on the

geometric search and uses relaxed symbolic plans mostly as a bias towards the goal.

It is shown to be probabilistically complete [4].

Planning with Semantic Attachments

Dornhege et al. [22, 29, 5] also use probabilistic roadmap geometric planning together

with symbolic planning. In comparison to aSyMov [3], their geometric planner pro-

vides some symbolic information to the high-level planner. For this hybrid interac-

tion, Dornhege et al. define a semantic attachment approach to interface geometric

planning. In their definition, a semantic attachment consists of a declarative part in

the domain description and a procedural part which is evaluated at planning time.

They also distinguish between semantic attachments that check for conditions and

those that apply effects, and propose an extension to PDDL to add these features

[29]. Erdem at al. [33] describe a causal reasoner that guides a motion planner. They

combine high-level reasoning with geometric reasoning by calling external predicates

and applying domain-level modifications.

Sampling with Differential Constraints

Plaku and Hager’s Sampling-based Motion and Action Planner (SMAP) [25] is dis-

tinctive for it can generate trajectories with differential constraints. Given a set

of differential constraints, its sampling routine generates only dynamically feasible

robot trajectories. To achieve this, it explores the continuous search space forward

in time and propagates geometric states by numerical integration. While SMAP can

interact with general-purpose planners on the symbolic level, its search is strongly

controlled by a utility function, which guides the search towards under-explored

actions and actions part of a discrete solution.

Belief-Space Planning

While the above planners operate on direct symbolic and geometric world states,

Kaelbling and Lozano-Pérez devise an approach to plan in the belief space, defined

as the space of probability distributions over world states [23, 27]. With this proba-

bilistic state representation, they can not only express continuous-valued uncertainty

about the outcome of an action, but also uncertainty about the current state. In

order to reason in this belief space, Kaelbling and Lozano-Pérez derive a new set

of fluents that can characterize preconditions and effects of the robot’s belief of the

world state (as opposed to the exact world state), and a set of action definitions

20 CHAPTER 2. RELATED WORK

suitable for mobile manipulation domains. Since sensing actions add certainty to

the belief state, the planner intrinsically chooses them where necessary, and sensing

actions need not be hard-coded as tasks themselves. The intention of their planning

architecture, named Belief-space Hierarchical Planning “in the Now” (BHPN), is to

solve robot tasks that involve sensing and navigation in a domain with uncertain

and incomplete information, with the robot to act autonomously over large time

scales.

Of course, complete sampling of the belief space would be prohibitively expen-

sive, especially over longer horizons with many objects. For this reason, they take

a strongly hierarchical approach and plan “in the now”; the BHPN planner gener-

ates an aggressively hierarchical plan, and directly executes the first low-level robot

action. After executing an action, the belief state is re-estimated and the planner

refines the abstract plan, following an interleaved planning–execution scheme. Kael-

bling and Lozano-Pérez argue that this extremely short-horizon search is a powerful

heuristic for uncertain and large domains, and they can show the completeness of

the search under a condition that actions are reversible. Contrary to generic task

planners that reason on world states [4, 22], BHPN’s architecture and its belief space

formulation requires the user to specify regression functions and heuristic generator

functions, which depend on start and goal states of a subtask. BHPN performs

a regression search, following a pre-image back-chaining strategy, which is rather

distinctive among robot task planners. Unlike approaches that use general-purpose

symbolic planners [4], BHPN is not designed as a conventional automated planner,

and adapting it to a different domain would not be straightforward. In general,

BHPN makes several interesting contributions to robot task planning: First, it uses

a belief-space formulation of a mobile manipulation domain, where sensing actions

are implicitly used to gain useful information and to solve tasks. Second, it takes

a strongly hierarchical, interleaved planning and execution approach, potentially

allowing large-scale domains.

Levihn et al. [48] improve the efficiency of the BHPN planner and the quality of

generated plans by adding mechanisms for adaptive replanning and foresight towards

future subgoals. In a recent work, Hadfield-Menell et al. [49] obtain deterministic

representations of belief space planning problems using maximum likelihood estima-

tion. They can integrate their system with an off-the-shelf automated planner and

plan with uncertain continuous-valued observations. In contrast to BHPN, their

approach is limited to deterministic actions.

2.3. TASK AND MOTION PLANNING SYSTEMS 21

Manipulation Tasks

In the course of the GeRT project on manipulation task planning, several approaches

to hybrid planning were proposed. Leidner et al. [50, 35] integrate a symbolic-

geometric search with backtracking, including an operational space manipulation

controller [51] to solve mobile manipulation tasks that require force control and

whole-body motion.

Dearden and Burbridge [32] propose a symbolic task planner with geometric

refinements, following a strongly symbolic approach where symbolic predicates ex-

press geometric relationships. Contrary to fully hybrid planners that try to find

plans in the complete search space [4, 22], their work is an interesting example of

how a mostly symbolic search with an incomplete geometric evaluation can solve

challenging manipulation problems.

Another way to prune the geometric state space is to extract sets of constraints

automatically from symbolic actions and evaluated geometric properties, a technique

proposed by Lagriffoul et al. [52]. Rather than performing complete geometric back-

tracking on single geometric states as most planners do [3, 22], they generate linear

constraints for ranges of symbolic and geometric states. In a preliminary demon-

stration, they can automatically generate intervals of feasible grasping angles for a

known type of object, and effectively prune the search tree for this type of action.

Hierarchical Planning

Karlsson et al. [38] use hierarchical task network (HTN) planning, with geometric

suggester functions to generate new geometric states. Their demonstration includes

a pick-and-place task on a humanoid robot. Wolfe, Marthi, and Russell [37] propose

the State-Abstracted Hierarchical Task Network planner (SAHTN), which combines

symbolic planning with sampling-based kinematic optimization. Their planner cre-

ates a global cache with actions as keys and state vectors as values. With this cache,

queries can re-use cached results that differ only in values irrelevant to that action.

They can show that hierarchical optimality is preserved by this caching strategy.

Propagation of Geometric Failures

In a recent work, Srivastava et al. [26] present a robot task planning approach that

relies on symbolic explanations for failures in the geometric search. Their underlying

principle is that geometric predicates, such as the absence of collisions, can only be

evaluated for individual instances of the geometric search space, but the reason for a

negative evaluation of geometric predicates can be explained symbolically, and then

22 CHAPTER 2. RELATED WORK

guide further search. The main limitation of their approach is that failures are not

always trivial to explain; other geometric predicates, such as the visibility queries

used by de Silva el al. [45], would be impractical to explain on the symbolic level.

In a first step, Srivastava’s algorithm invokes a general-purpose planner, assum-

ing all geometric preconditions to be met, and generates a high-level plan. This

symbolic plan is then refined by a geometric search; importantly, geometric failures

are formulated as symbolic predicates, and geometric choices are discretized to new

symbols, both of which are added to the symbolic state. Their geometric refinements

use several heuristics that are common in path planning with movable obstacles. As

an example, their path planner tries to avoid collisions with any movable objects

before resorting to paths that collide with an object. Srivastava et al. prove that

their search is complete under an assumption that only predicates of equal signs

appear in the goal criterion and in action preconditions and effects, with a formal

explanation given in [26]. As an example, this assumption intuitively holds for

pick-and-place domain definitions, in which predicates for non-collision and reacha-

bility appear with a positive sign. Since their task planning system makes relatively

weak assumptions about the symbolic planner, it can be integrated with different

general-purpose planners.

Manipulation Planning

Robot manipulation planning is clearly related to integrated task and motion plan-

ning, with several manipulation planners attempting to solve tasks by multiple prim-

itive actions [34, 28]. In particular, multi-modal manipulation planners can generate

paths over multiple contact states, and transit and transfer actions.

Hauser and Ng-Thow-Hing [34] propose the randomized multi-modal motion

planner (Random-MMP), which samples and searches in a hybrid search space of

continuous configurations and discrete contact states. Random-MMP can find dis-

crete mode switches (such as contact state changes) in the search space, and consid-

ers kinematic and dynamic constraints. In a demonstration, Random-MMP plans a

motion path for a full-body humanoid to walk and push an object on a table, which

involves many contact changes. While not reasoning on the task level, some manipu-

lation planners have become efficient at solving problems that require many different

primitive actions, similar to the problems solved by task and motion planners. One

such diverse-action manipulation planner is proposed by Dogar and Srinivasa [53],

which models the uncertainty of object poses and effects of actions. In a recent

thesis, Barry [54] describes the diverse action manipulation planner (abbreviated,

DARRT), which also solves multi-modal paths. Similar to Random-MMP [34], it

2.3. TASK AND MOTION PLANNING SYSTEMS 23

samples in the product space of robot and object poses. Its search algorithm fol-

lows a generalization of bidirectional rapidly-exploring random trees, with specific

projection functions to find lower-dimensional crossings between actions. DARRT

can solve manipulation tasks with multiple movable objects and types of actions,

including limited usage of tools.

Assembly Planning

Another motivation to study collision-free motion sequences of several objects is

assembly planning, with the objective to increase the efficiency of computer aided

design for assemblies of parts. With its research being most active in the 1990s,

assembly planners are among the first algorithms to understand multiple-object

motions and their preconditions as symbolic graph structures, and to identify object

relations symbolically. As an example, Halperin, Latombe, and Wilson [55] segment

the possible motion space into regions with equal geometric constraints among a

subset of parts, or subassembly. With this approach, they can generate a symbolic

graph to represent which geometric constraints will be changed by which action.

Even though assembly planning is more closely related to multi-robot motion plan-

ning than to automated planning, it is interesting to note how the discretization of

geometric states is key to several assembly planning algorithms.

Summary

In the recent decade, the field of integrated task and motion planning has made

rapid progress after the presentation of the first hybrid planner, aSyMov [3], and a

wide range of search techniques has been proposed [4, 37, 22, 23, 38, 35, 26]. Besides

planning in the product space of symbolic and geometric states [3, 4], approaches

to the related problems of hierarchical planning [38, 37] and belief-space planning

[23, 27] were proposed. Similar to most authors, our motivation to integrated task

and motion planning is driven by the fact that complex scenarios can only be solved

by a hybrid search; our application is targeted towards robot manipulation plan-

ning, including bimanual operations and assembly. Considering the different search

schemes discussed in Section 2.2, our search is a progression by an off-the-shelf sym-

bolic planner, where geometric preconditions and effects are evaluated on demand,

comparable to the semantic attachment approach [22]. Note that our system inte-

grates with a general-purpose planner that can reason under discrete uncertainty

[6]. Reasoning with uncertainty is otherwise offered by problem-specific planners

[23]; only recently, Hadfield-Menell demonstrated an off-the-shelf planner to handle

uncertain observations [49]. In contrast to other approaches, our KABouM planner

24 CHAPTER 2. RELATED WORK

operates on a single-sided approximation of the geometry for greater efficiency. This

approximation by bounding meshes is novel to our approach, and will be elaborated

in later Chapter 4.

In the following, we will provide a formal definition of the task and motion plan-

ning problem. After that, we will describe our planner in all details, starting from

high-level symbolic planning to geometric predicates, sampling with constraints, and

implementation.

Chapter 3

Integrated Task and Motion

Planning

25

26 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

The main intention of integrated task and motion planning is to enable robot

systems to perform useful tasks in the real world. For robots to operate in complex

domains such as service, manufacturing, construction, or tele-operation, they need

to reason about both symbolic actions and the geometric world. The area of robot

task planning is concerned with solving these types of high-level tasks, which cannot

be achieved by simple control schemes, by applying a number of actions that each

make predictable changes. From a very broad view, the general approach of task

planning is to solve for a sequence of simple actions that the robot can execute in the

world, such that the world finally fulfills certain goal criteria. While these actions

are defined as manipulation or sensing actions whose result can easily be planned

ahead, they may only be applicable under a combination of symbolic, kinematic,

and geometric conditions. Only for the most simple tasks, symbolic planning can

be separated from motion planning; for solving more useful tasks, an integrated

symbolic and geometric search is required [56].

3.1 Problem Definition

In the following, we define the formal integrated task and motion planning problem,

with the notation that will be followed throughout this thesis. In the most gen-

eral form, an integrated task and motion planning problem instance is a 3-tuple

(Σ,R,M), where Σ is the purely symbolic domain, R the kinematic definition of

all robots, andM the geometric definition of all robots and objects. Each of these

structures is a composition of simpler structures, which are defined as follows.

The symbolic domain Σ is a 4-tuple (S,A, I, G) of a set of symbols S, a set of

actions A, an initial symbolic state I, and a set of goal criteria G. Essentially, Σ

represents an automated planning domain of first-order predicate calculus, similar

to the original STRIPS formulation by Fikes and Nilsson [17], with slight additions

towards sensing and manipulation actions. S defines the set of discrete symbols

that may appear in symbolic definitions. The set A includes all actions; an action

a ∈ A is again a tuple (p, pre(a), eff(a)), composed of a set of parameters p, a list

of queries as preconditions pre(a), and a list of effects eff(a). The parameter set p

is a set of variables that the planner must instantiate to evaluate the action, and

which may appear in the preconditions and effects of that action. A precondition can

either be an atomic formula querying the symbolic state, or a binary evaluation of a

kinematic or geometric query. (The list of kinematic and geometric predicates will

be defined in later Chapter 4.) A list of preconditions pre(a) is then a conjunctive

set of preconditions that must evaluate true for an action instance to be applicable

3.1. PROBLEM DEFINITION 27

to the planning state. An effect either adds or removes a simple statement in the

discrete state, or calls a kinematic or geometric function that makes a change to

the continuous-valued state. The goal criteria G are likewise a conjunctive set of

conditions as the preconditions are, but do not require any parameters. In particular,

goal criteria allow both symbolic and geometric queries.

The set of kinematic structures R contains one element R ∈ R for each robot in

the domain. A kinematic structure R is further a tuple (s,FK, q0) composed of an

associated discrete symbol s, a forward kinematic function FK and an n-dimensional

initial configuration vector q0. The initial configuration q0 represents the initial

angles and lengths of revolute and prismatic joints in the kinematic, respectively.

The forward kinematic function FK is a mapping Rn × [0..n] →→ SE(3) from the

configuration space and a rigid body identifier to the operational space of that rigid

body. Typically, FK is only defined for a part of the configuration vector space,

depending on the ranges of the joints.

The geometric world is defined by a set of geometric modelsM. Each geometric

model M ∈ M is a tuple (s,B,x0) of an associated symbol s, analogous to the

kinematic structure definition, a set of geometric meshes B, and a 3D pose x0 ∈
SE(3). A set of meshes is further composed into mesh elements B ∈ B that may

be given as sets of vertex triples, and which describe the geometric boundary of a

rigid body of a robot, or of an object in the domain. A vertex triple is a 3-tuple

of vertices (v0, v1, v2) ∈ R3 × R3 × R3. All meshes are constrained to be closed,

orientable 2-manifolds. Furthermore, it is assumed that vertices are enumerated

counter-clockwise, i.e. (v1 − v0) × (v2 − v0) points outside. For many objects in a

domain, the geometric model will contain a single mesh; in case of an n-degrees-of-

freedom robot, the geometric models typically contains |B| = n+ 1 meshes, one for

each link. While this concludes the problem instance definition, slight syntactical

additions may be introduced by the symbolic planning system. Depending on the

automated planner in use, action definitions may allow more general constructs

for quantified reasoning or numerical expressions. In addition, the interface to the

geometric domain through non-symbolic predicates and effects is further clarified in

Section 3.3.2.

The integrated task and motion planning problem is to solve a viable plan for

a given problem instance (Σ,R,M) as defined above. In this respect, a plan is

a sequence or tree of actions and action parameters that, subsequently applied to

the initial state (I, q0,x0), will end in a state that fulfills all goal criteria G. In

particular, the actions in the plan must in all steps fulfill all preconditions and apply

their respective effects. The most important extension to the traditional STRIPS

28 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

formulation [17] and classical, artificial intelligence planning is that many of these

preconditions depend on (and many effects make changes to) the non-symbolic state,

whose structure is defined in R andM. In the case of a branched plan, where a tree

of actions is generated, and unknown variables exist that are resolved at run-time

and decide which branch is to be taken, all leaves of the plan must fulfill the goal

criteria.

3.2 Related Work in Symbolic Planning

In the field of artificial intelligence, the automated planning problem is to generate

a tractable sequence of actions that achieves a certain goal, given an action schema

of the preconditions and effects of these types of actions [15, Ch. 10]. (Other au-

thors refer to actions as operators and to classical planning as logic-based discrete

planning [57].) The classical planning problem is formally related to the Boolean

satisfiability problem, to which it can be translated when the set of symbols is finite.

While finding a satisfying Boolean assignment is a viable approach and comparably

good at solving hard instances, practical planning instances are more suitable for

heuristic searches. In general, the search in the state space can be directed forward

(progression search) or backward (regression search). Both search techniques must

handle the exponential growth of the state space with respect to the number of ac-

tions. In some scenarios, backward search can use partially uninstantiated actions

and keep the branching factor lower, but still requires further heuristics for good ef-

ficiency. The general approach to a heuristic search is to apply domain-independent

relaxations. Standard ways to relax actions are to ignore some or all of their pre-

conditions, or to ignore effects that delete literals, as proposed by Hoffmann and

Nebel [58]. Other heuristics involve abstracting states by ignoring fluents or de-

composition of the goal into independent subgoals [15]. Another popular approach

is the generation of a planning graph, which is a subset of the full state transition

graph and allows reachability analysis to guide the search. Planning graphs were

first described by Blum and Furst [59].

In contrast to traditional planning representations, more expressive languages

were proposed and investigated. An example that is relevant towards our application

of robot manipulation and sensing is the situation calculus language, as introduced

by McCarthy [60] and refined by Reiter [61]. Situation calculus is designed to model

linear time with branching situations, and exhibits some features of a second-order

language. As an example, the action language Golog, which is based on the situation

calculus, has been applied to multi-robot task planning [62]. However, in situation

3.2. RELATED WORK IN SYMBOLIC PLANNING 29

calculus planning, efficiency to solve practical problems is considerably sacrificed

for expressiveness of problem definitions [15, p. 388]. Other generalizations include

temporal planning, where actions require a certain time, concurrent planning, where

multiple actions may be performed simultaneously, or probabilistic planning, where

the state can only be observed up to an uncertainty.

With our application to robot task planning in mind, we limit the discussion

to problem formulations that can efficiently be solved. We therefore focus our dis-

cussion on high-level task planning with deterministic, non-concurrent, sequential

actions with only discrete uncertainty that is planned centrally for all robots. Be-

sides the already mentioned STRIPS formulation for domain descriptions, which

was proposed by Fikes and Nilsson in 1971 together with the first major planning

software [17], PDDL [63] has more recently gained popularity, especially through the

International Planning Competition and wide acceptance among planning software.

PDDL separates the domain description with its action schema, predicates and ef-

fects definition from to problem instance, which includes initial and goal states of

a particular instance. Its core syntax is stable and the most common format for

software planners. In addition, many extensions and variants were proposed to ac-

commodate more expressive features, for instance numerical fluents and multiple

agents.

Automated Planning Software

Among planning software systems, several implementations have been applied to

robotics tasks, on which we focus our discussion. The Fast Forward planner (FF)

by Hoffmann and Nebel [58] was the first to combine a hill-climbing search with a

goal distance heuristic that ignores fluent-deleting effects. The heuristics of FF and

its variants have proven particularly efficient for practical benchmark problems [15,

p. 395]. Similar to FF, the Fast Downward (FD) planner, developed by Helmert [64],

progresses the search following several heuristics. However, it translates the problem

to a multi-valued planning task representation instead of operating in a conventional

propositional representation. The heuristics of the FF planner have been adapted

to work in a robotics task and motion planning system for multi-object manipula-

tion [65]. With careful interface implementation and symbolic mapping of continu-

ous variables, multi-object robot manipulation can directly use domain-independent

planners, such as FF and the cost-sensitive FD planner, as demonstrated by Sri-

vastava [66]. Other planners are dedicated to hierarchical task planning, where

larger-scale domains can be handled when a domain-specific hierarchy of actions is

provided, instead of a classical STRIPS domain (Section 3.1). An implementation

30 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

that has been applied to robot task planning is the Simple Hierarchical Ordered

Planner (SHOP), which performs ordered task decomposition. SHOP was described

and made available by Nau et al. in 1999 [67], and has been applied in several hierar-

chical task and motion planning systems since, for instance Bidot’s forward-chaining

combined task and path planner [36].

While the above-mentioned task planners apply general-purpose, artificial in-

telligence (AI) planners, several integrated task and motion planning systems use

domain-specific planners, and many of the discrete search schemes directly encode

a fixed action schema rather than separating the domain description from the code.

As an example, Kaelbling and Lozano-Pérez’ belief-space hierarchical planner “in

the now” (BHPN) [23, 27] includes a domain-tailored backtracking search that di-

rectly evaluates actions, implemented in a scripting language. One of the first hybrid

task and motion planning systems, the aSyMov planner by Gravot, Cambon, and

Alami [3] included a hand-crafted search, and was later revised to a version that can

parse more generic domain descriptions [4].

3.3 Approach to Integrated Task and Motion Planning

Our approach to the integrated task and motion planning problem (Section 3.1) is

built on a number of design principles. In short, these principles are concerned with

the separation of search and domain description, the combination of discrete task

space and continuous geometric configuration space, and features necessary to solve

challenging scenarios in robot applications.

• General AI planning: We apply a general-purpose, automated planner and

define the search domain, which varies between robots and robot applications,

separate from the planner. This way, our task planner can leverage domain-

independent heuristics that are implemented in state-of-the-art AI planners,

and may benefit from future improvements in the field of automated planning.

• Bounded geometric predicate and geometric sampling interface: There is a

wide consensus [4, 27, 66] that all but the most trivial robot tasks can only be

solved in a hybrid search, where a task planner can generate geometric sam-

ples, evaluate geometric preconditions, and refer to geometric effects or new

geometric states through discrete–geometric state mapping. Providing novel,

efficient geometric queries is one of the main contributions of this work. Our

approach is to implement geometric queries as bounded geometric predicates,

which are made particularly efficient through single-sided, ε-precise geometric

3.3. APPROACH TO INTEGRATED TASK AND MOTION PLANNING 31

approximation. Their definition and implementation are elaborated in Chap-

ter 4.

• Planning with discrete uncertainty and sensing actions: Intelligent robots in

service and manufacturing services need to reason how to obtain information

that is required to solve a task. With moderate generalizations of the classical

STRIPS formulation, discrete uncertainty as well as gain and loss of informa-

tion can be modeled [68, 69], which is necessary to solve these types of robot

scenarios.

Concerning the task planner, these design principles lead to the choice of the

Planning with Knowledge and Sensing (PKS) planner by Petrick and Bacchus [68,

69, 70] as a general-purpose planner in our KABouM system. Other aspects of our

approach, such as the choice of swept volumes as an intermediate representation for

robot motion, which can be both referenced in symbolic and geometric reasoning, are

discussed in Chapter 4. The discussion of our KABouM planner is directed from the

high-level task planner towards lower-level geometric predicate evaluation, followed

by notes on the implementation and several experiments. In the following section, we

describe the symbolic planner PKS, along with the task planning scenario Force

Sensing. While this scenario features discrete uncertainty, which motivates the

discussion of conditional planning of robot sensing actions, it is kept intentionally

simple as it does not require geometric queries.

3.3.1 Planning with Knowledge and Sensing

Planning with Knowledge and Sensing (PKS) is a conditional automated planner

that describes a state by the agent’s knowledge about the world, rather than the

world state itself. It was first presented by Petrick and Bacchus in 2002 [68] and

has further been developed by Petrick [69, 70]. Its formal language extends the

classical formalism of the Stanford Research Institute Problem Solver (STRIPS)

for expressing an agent’s knowledge of the world. Contrary to classical planning,

PKS does not assume a closed world, where all predicates are either true or false.

The agent’s knowledge of the world may be incomplete, and the agent (or, robot)

may gain or lose knowledge as an effect of performing an action. This knowledge-

level approach effectively allows planning with discrete uncertainty and is therefore

well-suited for robot task planning.

32 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

Knowledge-level Statements

In order to express an agent’s knowledge of a predicate P (x), PKS introduces the

additional modal operatorK to provide the expressionK(P (x)). Contrary to closed-

world planning, this allows the statements K(P (x)) for “P (x) is known to be true”,

K(¬P (x)) for “P (x) is known to be false”, and ¬K(P (x)) for “P (x) is not known”.

While the operator K is most commonly used in all preconditions, two additional

operators Kw and Kv are available to express knowledge of a value that will become

known at run-time, when the robot actually performs actions in the physical world.

Kw expresses the knowledge of a binary value that will be resolved when the plan

is executed. While the value of a predicate P (x) may be unknown at the time of

planning, which is the case for sensor measurements, the expression Kw(P (x)) can

already be used as a planning-time effect of such a sensing action, and in precondi-

tions of actions that require its measurement result. In this case, PKS generates a

conditional plan that provides two branches, one for each outcome of the run-time

sensing action. Analogous to the binary knowledge of Kw, the operator Kv expresses

the knowledge of a function value f(x) at run-time, where f is an unnested function

term. The literal Kv(f(x)) can likewise be used in effects of sensing actions and

preconditions of actions. PKS offers two further operators to express disjunctive

and local closed-world information, however, only the three previously mentioned

types of knowledge are used in this work.

Even though all formulas with the operators above, including Kw and Kv, could

be translated into formulas with the modal operator K [70, p. 181], PKS separates

formulas by the type of knowledge and stores them in different databases, named

Kf , Kw and Kv. Regular fluent knowledge, declared with the operator K, is stored

in a database Kf , while the types of knowledge with operators Kw and Kv are

stored in the databases Kw and Kv, respectively. State updates, which add or

delete knowledge and are part of an action’s effects, must refer to which database

a formula is added to or deleted from. Separating the different types of knowledge,

together with some limitations on the possible types of queries, allows a very efficient

implementation of an inference algorithm [70, p. 187].

Knowledge-level Queries

To allow reasoning on this extended, knowledge-level state of the world, PKS also

provides an extended set of primitive queries. For an atomic formula φ, primitive

queries are available to answer whether φ is known to be true K(φ) or false K(¬φ),
or if the robot will know the binary value of φ at run-time Kw(φ). To query whether

the robot will know the value of an unnested function term f at run-time, a primitive

3.3. APPROACH TO INTEGRATED TASK AND MOTION PLANNING 33

query Kv(f) is provided [70, p. 186]. Besides these primitive queries, their negation

is also permitted. PKS chooses this set of primitive queries to both support a

wide range of planning problems with incomplete information, and ensure efficient

inference from the knowledge databases. Queries are employed at several places of

a planning problem definition: The set of preconditions pre(a) of an action a is

a conjunction of primitive queries. Furthermore, the effects of an action, eff(a),

are formulated as conditional updates to the state of knowledge. An effect may

optionally define a conditional primitive query, and always specifies a formula to be

added to or to be deleted from one of the databases.

Similar to classical planning in world states, the knowledge-level PKS planner

makes assumptions about the knowledge state of the world: It generally requires that

the agent has complete knowledge of effects and non-effects of actions, and that the

agent’s actions are the single source of changes to the world [70, p. 199]. However,

more general scenarios can be solved when replanning is allowed [71]. (Of course,

actions for multiple robots can always be planned when planning and execution is

centralized.)

Note that these assumptions are different from hierarchical planners that allow

later refinement of actions. As an example, Kaelbling and Lozano-Pérez’ hierarchical

planner “in the now” interleaves planning and execution, expects actions to fail, and

refines abstract actions to reconstruct a working plan [40], and its successor BHPN

[27] models effects as changes to the agent’s belief, given as a probability distribution

over world states.

3.3.2 Interface to Robotics-specific Functions

Apart from these purely symbolic queries, the Planning with Knowledge and Sensing

(PKS) planner can call a domain-specific function g(x) outside the symbolic plan-

ner, which can serve as an interface between symbolic task planning and continuous-

valued kinematic and geometric motion planning. When encountering such an ex-

ternal function, PKS can pass over a list of symbols x as an argument list to such

a library function g, receive its result, and resume symbolic progression. The given

list of symbols x directly maps to the symbols in the knowledge state and there-

fore provides a generic interface between the symbolic planner and robotics-specific

functions. In the current implementation, PKS can interact with a domain-specific

function g(x) through the symbolic–geometric interface in three different ways:

• Parts of the symbolic state can be passed to the robotics-specific layer through

the list of symbols x. Since conjunctions are guaranteed to be short-circuit

34 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

evaluated, a conjunction K(φ)∧ g(x) can conditionally pass knowledge to the

interface.

• The robotics layer can be queried through a domain-specific function and effec-

tively add or delete symbolic knowledge. To achieve this, the function g may

be placed in the conditional part of an effect to update a specific database.

For this, effects of the form g(x)⇒ add(Kf , φ) are allowed. Likewise, updates

to the other databases and deletion of knowledge are allowed.

• The result of g may be compared to the knowledge state through the nested

query K(φ = g(x)). This is currently the only nested query allowed in PKS,

and future work may expand the set of possible queries.

From the planner’s point of view, a domain-specific function g can be an arbitrary

software library function, with no guarantees being made about its efficiency and

its effects to the completeness of the search. However, it is an important goal of

this work to provide a powerful and efficient set of functions that allow formulation

and solution of a wide range of problems. In the view of integrated task and motion

planning, the design of this function interface to kinematics and geometry is of

crucial importance and subject to on-going research [26, 29]. In the following, we

will refer to these domain-specific functions as geometric predicates, which appear

both in preconditions and effects, and will be discussed in detail in Chapter 4.

In order to discuss our approach to robot task planning, we first describe a task

planning scenario that requires only knowledge-level reasoning, the Force Sensing

scenario. This first scenario is simple enough not to require any geometric predicates

and effects—rather than interacting through robotics-specific functions, it suffices

to solve task-level actions and later refine these during robot trajectory generation.

In further Chapter 6, we will introduce and evaluate more complex scenarios, which

require a combined symbolic–geometric solution and demonstrate the full feature

set of our KABouM system for integrated task and motion planning.

3.3.3 Force Sensing Scenario

As described in previous work [7], the Force Sensing scenario contains a com-

pliant robot manipulator that is supposed to transfer n beverage containers from

one support surface to another. Figure 3.1 shows an overview of a setup with two

containers, which was planned and demonstrated with the seven degrees-of-freedom

LBR4 robot. In this problem scenario, a container may be filled with a liquid, in

which case the robot must transport it upright in order to avoid spilling any liquid.

3.3. APPROACH TO INTEGRATED TASK AND MOTION PLANNING 35

Figure 3.1: Implementation of a Force Sensing instance with two objects, a torque-
sensing compliant manipulator and a force-controlled parallel gripper [7, 9]. The LBR4 robot
is supposed to transfer beverage containers to another table, and it must hold containers
upright to prevent spilling unless they are known to be empty.

Containers that are completely empty can safely be transferred on arbitrary trajec-

tories, and the robot should choose a shorter trajectory in such case. In order to

determine whether a container is empty or can potentially be spilled, the robot can

measure its weight by force sensing. In the experiment setup, the residual force in

the tool space of the robot is reported from a joint impedance controller that relies

on internal torque sensors. Measurements are sufficiently accurate when the robot

keeps a static, non-degenerate position. Of course, only a grasped object can be

weighed.

Force Sensing Domain

The symbolic actions of the domain definition are listed in Table 3.1. There are

two variants of transfer actions available, a transferUpright and a transferFast action.

To apply a transfer action to an object o, the robot must have grasped that object,

K(isGrasped(o)), and it must know the truth value of whether isSpillable(o) to decide

which transfer action is allowed. The knowledge of whether the object o can be

spilled becomes known when the action senseWeight(o) is executed in the real world.

36 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

As a planning-time effect, the formula isSpillable(o) will be added to the knowledge

database Kw, contrary to regular fluent knowledge.

Table 3.1: Symbolic action definition A of the Force Sensing scenario.

Action Preconditions Effects

senseWeight(o) K(isGrasped(o))
¬Kw(isSpillable(o))

add(Kw, isSpillable(o))

transferFast(o) K(isGrasped(o))
K(¬isSpillable(o))
K(¬isRemoved(o))

add(Kf , isRemoved(o))

transferUpright(o) K(isGrasped(o))
K(isSpillable(o))
K(¬isRemoved(o))

add(Kf , isRemoved(o))

grasp(o) K(emptyGripper)
K(¬isRemoved(o))

add(Kf , isGrasped(o))
add(Kf , ¬emptyGripper)

ungrasp(o) K(isGrasped(o))
K(isRemoved(o))

add(Kf , ¬isGrasped(o))
add(Kf , emptyGripper)

In order to produce correct sequences of grasping and transfer actions, the state

is managed by a nullary predicate emptyGripper and a unary predicate isRemoved(o).

A small number of preconditions in the action definitions are optional and are added

only for efficiency: the condition that the isSpillable(o) predicate should not be known

before measuring and the queries to isRemoved in the grasp and ungrasp actions.

To complete the symbolic domain definition Σ = (S,A, I, G), goal criteria and

an initial setting of the knowledge databases need to be given. In the case of a

scenario instance with two objects o1 and o2, the initial state I and goal definition

G would be defined as

I = K(emptyGripper) ∧K(¬isRemoved(o1)) ∧K(¬isRemoved(o2))

G = K(emptyGripper) ∧K(isRemoved(o1)) ∧K(isRemoved(o2)) .

PKS provides a few syntactical extensions to express all-quantifiers and arrays of

symbols, such that repetitive symbols o1, o2, . . . need not be explicitly enumerated

in larger instances.

Solution of the Force Sensing Scenario

Since this scenario contains predicates whose values are resolved at run-time, its

solution is a plan with branches rather than a sequence. Precisely, the generated

3.3. APPROACH TO INTEGRATED TASK AND MOTION PLANNING 37

A

grasp(o1)
senseWeight(o1)
branch(isSpillable(o1))

B

transferUpright(o1)

C

ungrasp(o1)

D

grasp(o2)
senseWeight(o2)
branch(¬isSpillable(o2))

E

transfer(o2)

F

ungrasp(o2)

Figure 3.2: Solution of a Force Sensing instance with two objects [7, 9]. The LBR4
robot grasps objects and weighs them at run-time (images A and D), and then follows the
correct branch depending on these measurements. Only containers that are known to be
empty may be transferred on a fast, direct path (image E). Otherwise, the object must be
transferred in an upright pose (image B).

plan is a tree of actions with sets of symbols as parameters. Each junction defines

a ground atomic formula that will be resolved from the preceding sensing action,

with a positive and a negative branch to follow depending on its truth. In order to

execute this branched plan, an execution component starts with the action at the

root of the plan. The implementation of each type of action refines the symbolic

action instance and controls the robot and its sensors. In this scenario, refinement

of the manipulation actions involves solving inverse kinematics in a simple, posture-

optimizing grasp scheme, generating paths with task space constraints, and smooth

trajectory interpolation. This first scenario is kept intentionally simple with respect

to collisions, which are effectively avoided by lifting objects high enough over the

table area when they are transferred. For a sensing action, its action implementa-

38 CHAPTER 3. INTEGRATED TASK AND MOTION PLANNING

tion interprets measurements and generates a list of resolved binary values. The

execution component then follows the appropriate branch in the plan.

Figure 3.2 shows a solution that was executed on the real robot setup. The robot

grasps the first object and lifts it slightly in order to sense its weight by measuring

internal torques and calculating external forces to the tool frame (Figure 3.2 A).

In this example, sensor measurements indicate that container o1 could be spilled;

task execution follows the appropriate branch in the plan and generates a trajectory

that locks both tilt axes in the robot tool frame (Figure 3.2 B). Since the second

container o2 is measured to be empty, it is transferred on a faster, unconstrained

trajectory (Figure 3.2 D–F).

Discussion

On the task planning level, the Force Sensing scenario shows an inter-dependence

between sensing actions and manipulation actions [7]. The manipulation actions

transferUpright and transferFast require the result of a sensing action, which in turn

requires previous application of the manipulation action grasp. One may hypothesize

that the inter-dependence between sensing and acting is a common property of real-

world robot tasks. Importantly, the gain of information by this sensing action is

directly formulated in the modal language of knowledge. In this knowledge-level

formalism, a sensing action does not need to be formulated as a task of its own,

but is implicitly planned in order to gain knowledge required by subsequent actions.

Clearly, knowledge-level planning is well suited to generate plans in scenarios with

discrete uncertainty and actions that result in gain or loss of information.

3.3.4 Conclusion

In the beginning of this chapter, we have defined the integrated task and motion

planning problem. In addition to the symbolic domain definition Σ, the integrated

problem also defines robot kinematics and geometric models, and requires geometric

preconditions to be fulfilled and geometric effects to be applied. We then discussed

the state of the art in automated planning, and chose Planning with Knowledge and

Sensing (PKS) as a symbolic planner. PKS plans on the knowledge level, can reason

under discrete uncertainty, and can generate plans with branches. We demonstrated

its contingency planning behavior with the Force Sensing scenario, where a robot

needs to transfer objects depending on run-time force measurements, which leads to

branches in the plan.

We also discussed the symbolic interface to robotics-specific functions. The

Force Sensing scenario is a separable problem, where we can first solve the sym-

3.3. APPROACH TO INTEGRATED TASK AND MOTION PLANNING 39

bolic problem, and then refine actions in the symbolic solution with collision-free

paths. It allows a two-step search of symbolic and geometric planning, very similar

to the Shakey system [30]. However, only the most simple task and motion planning

problems can be separated, while more interesting, real-world problems can only be

solved in a combined search space [3]. In order to combine task and motion planning,

we define a mapping through geometric predicates for queries from the symbolic to

the geometric level, and constraint space sampling to instantiate geometric states

that fulfill certain symbolic conditions.

In the following chapter, we define a set of geometric predicates to abstract from

geometric states to symbolic predicates. This discussion leads us to the derivation

of single-sided approximate collision and inclusion queries, which are vital to almost

all robotics scenarios. After discussing the efficient evaluation of these predicates,

we complete our symbolic–geometric mapping by describing a method for sampling

with geometric constraints, which is followed by the evaluation of several integrated

task and motion planning problems on the KABouM system.

Chapter 4

Bounding Meshes for Efficient

Geometric Predicates

41

42 CHAPTER 4. BOUNDING MESHES

Efficient geometric data structures and algorithms are key to integrated robot

task and motion planning. Our Knowledge-level Action and Bounding Geometry

Motion planner (KABouM) relies on and reasons on the level of geometric pred-

icates, in particular collision and inclusion among all geometric entities—objects,

robots, and swept volumes of robot motions. Therefore, the efficiency of these ge-

ometric queries has a high impact on planning performance and the complexity of

the problems that can be solved. In this chapter, we will derive a new algorithm,

the bounding mesh algorithm, to generate bounded approximations of geometric

entities. This new geometric representation can increase the performance of all ge-

ometric queries of the planner. In contrast to earlier approaches, the geometric

approximation is strictly single-sided, which is a favorable property in the robotics

domain. In short, the task and motion planner detects all collisions and detects them

fast, it may only overlook narrow passages thinner than a parameter ε. Essentially,

it takes advantage of the asymmetric tolerances of collision and inclusion queries.

The central idea of this chapter is to elaborate the notion of bounded geometric

predicates, and to derive algorithms to evaluate these queries efficiently. First, we

give a mathematical definition for the single-sided approximation and boundedness

of this type of predicates. Then, we derive the bounding mesh algorithm as a single-

sided approximation of arbitrary geometric shapes. The discussion of bounding

meshes is accompanied by a more general evaluation of potential applications to

a wider range of problems in collision checking and motion planning. Finally, we

complete our discussion on geometric predicates by presenting efficient algorithms

for their evaluation and by giving notes on their implementation in the KABouM

framework.

4.1 Bounded Geometric Predicates

Robot task and motion planning lends itself to single-sided approximation of colli-

sion and inclusion predicates. As mentioned earlier, typical robot task and motion

planning problems strictly avoid collisions, because collisions may cause damage

to humans, robots, or objects. Even in less severe cases, collisions typically have

unforeseen effects in the physical world and may render the task infeasible. Re-

porting a collision in a borderline case is therefore a reasonable design choice for a

single-sided approximation. Inclusion queries appear less frequently in task planning

scenarios—for instance as part of goal regions for object placement or for defining

container objects, and they behave in a way opposite to collision queries. Ignoring

a geometric inclusion will not produce incorrect plans in typical scenarios; it will

4.1. BOUNDED GEOMETRIC PREDICATES 43

at most affect the search space. Of course, we would like to control the precision

of this approximation in a reasonable way, because heuristics too arbitrary or too

coarse can easily affect the quality of the task and motion planner. A meaningful

way to control the level of approximation of collision and inclusion queries is to

guarantee a maximum geometric distance ε from the exact query, which we specify

in the following. Contrary to many earlier approaches to mesh approximation, it is

important to note that we apply only a single-sided approximation. Collisions may

be reported for distances less than ε, and inclusions may be ignored for penetration

depths less than ε. In all other cases, including all collisions and non-inclusions, the

predicates must be exact.

In order to provide a formal definition of the bounded geometric predicates,

we cover all four cases of geometric queries that we implement in the KABouM

system, including collisions with swept volumes of robot motions. Let m0, m1

denote geometric models whose border is given by closed triangle meshes, and Q0,

Q1 denote continuous paths in an Euclidean space. r0, r1 refer to robot kinematics

whose definition includes a continuous mapping of these paths to SE(3). For a robot

r0 and a path Q0 within the configuration space of its kinematic, SV(r0, Q0) defines

the volume swept by its geometry along that path. For brevity, our definition uses

signed distances, where negative values represent penetration depths.

Definition 1 (Bounded Geometric Predicates). We define the following binary ge-

ometric predicates for collision and inclusion.

1. m0 ∩m1 ̸= ∅, whether two geometric models collide.

2. SV(r0, Q0 = [q0, q1, . . .]) ∩m1 ̸= ∅, whether the swept volume of a robot motion

collides with an object.

3. SV(r0, Q0) ∩ SV(r1, Q1) ̸= ∅, whether the swept volumes of two robot motions

collide.

4. m0 ⊆ m1, whether a geometric model includes another.

Their evaluation may use a single-sided ε-precise approximation: Collision pred-

icates (1–3) may return arbitrary answers for signed distances within [0, ε], and the

inclusion predicate (4) may return arbitrary answers for signed distances within

[−ε, 0]; otherwise, their answer is exact.

Table 4.1 visualizes our definition of bounded geometric predicates in a truth table.

44 CHAPTER 4. BOUNDING MESHES

Table 4.1: Definition and truth table of the bounded collision and inclusion predicates in
terms of signed distances. The values of the corresponding exact predicates are given in
brackets, where they differ. Note that in the inequalities that define each case, d refers to
the range of signed distance values over all points of m0, in contrast to the shortest distance
alone.

Signed
distances d to
m1, measured

from all
points of m0

Visual Example Bounded
Collision
Predicate

m0 ∩m1 ̸= ∅

Bounded
Inclusion
Predicate
m0 ⊆ m1

d < −ε

ε ε

m0

m1 true true

d < 0 true arbitrary
(ideally, true)

−ε < d < ε true false

0 < d arbitrary
(ideally, false)

false

ε < d false false

4.2. BOUNDING MESHES 45

Design of the Bounded Geometric Predicates

Our definition of bounded geometric predicates with their single-sided, ε-precise col-

lision and inclusion queries is chosen with two thoughts in mind. The first reason is

that in robot task and motion planning, it is sufficient to provide geometric pred-

icates that are exact on one side of the approximation. This property of collision

and inclusion queries was already explained in earlier discussions. The second rea-

son is that approximation is necessary. Geometric queries are the computational

bottleneck in most task and motion planners, including ours, and exact queries are

computationally expensive. In order to increase the possible size and complexity of

problems that the system can solve, an approximation is therefore necessary. Based

on these two reasons, we developed the bounding mesh and bounding sets of convex

polyhedra approximations of geometric meshes. In the following sections, we derive

techniques to generate these structures and apply them to evaluate the bounded

geometric predicates at great efficiency.

4.2 Bounding Meshes

Single-sided approximation can both reduce the complexity of geometric shapes and

preserve the correctness of geometric queries. In our case, we apply this approxi-

mation to implement a set of bounded geometric predicates for integrated task and

motion planning. This section is concerned with the general problem of single-sided

approximation of triangular meshes. In particular, we develop a new algorithm to

generate such a single-sided approximate mesh, which we refer to as a bounding

mesh. In our definition, a bounding mesh is a mesh that includes an original mesh,

and has fewer vertices than the original. Conversely, an inner bounding mesh is in-

cluded by the original mesh. A complete definition of both (outer) bounding meshes

and inner bounding meshes is given in the following.

Definition 2 (Bounding Mesh). For a given mesh M , we may generate a single-

sided approximation M ′ with the following properties.

1a. If M ′ ⊇M , M ′ is a bounding mesh (or, outer bounding mesh) of M .

1b. If M ′ ⊆M , M ′ is an inner bounding mesh of M .

2. M ′ is a simplification of M , it should have fewer vertices.

We may refer to M ′ as ε-precise if the Hausdorff distance d(M,M ′) is no larger

than a given parameter ε.

46 CHAPTER 4. BOUNDING MESHES

The Hausdorff distance is a commonly used metric to measure the difference

between two meshes [72]; it is defined as

d(M,M ′) = max


sup
p∈M

inf
q∈M ′

∥p− q∥2, sup
q∈M ′

inf
p∈M
∥p− q∥2


. (4.1)

Intuitively, the Hausdorff distance between two meshes is defined as the maximum of

the shortest distances to the other mesh over all points on both meshes [12]. Usually,

a bounding mesh is supposed to be no further than a distance ε from the original;

with this property, it allows a wide range of bounded-approximation algorithms to

run efficiently, including our bounded geometric predicates.

4.2.1 Level-of-Detail Models

Of course, mesh approximation and level-of-detail models are well known concepts

in computer geometry and related fields. Many geometric algorithms can operate

more efficiently when simplified versions of a given mesh are available. As an ex-

ample, many collision detection routines generate simplified models that enclose the

original mesh and operate on bounding volumes in their broad-phase search. Com-

mon bounding volume hierarchies include axis-aligned boxes (Figure 4.1b), spheres

(Figure 4.1a), oriented boxes, discrete orientation polytopes, and convex hulls (Fig-

ure 4.1c) [73, pp. 75ff]. Figure 4.1 shows an overview of the most common types

of bounding volumes of a high-resolution mesh, with bounding meshes at different

precisions and the original mesh given for comparison. We would like to emphasize

that bounding meshes and the broader types of volume hierarchies guarantee to

enclose the original mesh, while most other mesh approximations, especially those

designed for computer graphics and animation, do not. General, unconstrained mesh

simplification was an active field of research in the 1990s, with a wide range of lo-

cal and global optimization algorithms being developed. Luebke gives an extensive

summary on the field of unconstrained mesh simplification in an article [74] and in

a book [75]. Cignoni, Montani, and Scopigno also categorize and evaluate existing

implementations in a survey article [76].

Sphere Tree Bounding Volumes

The sphere is the type of shape that allows the fastest collision checking. Sphere

trees are unions of spheres and can be generated to approximate general shapes.

Some algorithms can generate sphere trees that are guaranteed to enclose meshes

4.2. BOUNDING MESHES 47

(a) Bounding sphere (b) Axis-aligned bounding box

(c) Convex hull, 2,536 vertices (d) Bounding mesh, ε = 1%, 1,700 ver-
tices

(e) Bounding mesh, ε = 0.3%, 3,401 ver-
tices

(f) Exact model, 437,645 vertices

Figure 4.1: Bounding volume hierarchy of a high-resolution mesh. Bounding spheres
and axis-aligned boxes are implicitly used in many geometric algorithms; convex hulls are
sometimes generated in a pre-processing step. Bounding meshes can be understood as more
fine-grained approximations in this hierarchy. The original model was scanned and made
available by the Stanford Computer Graphics Laboratory.

48 CHAPTER 4. BOUNDING MESHES

(up to a certain sampling resolution) and can therefore serve as bounding volumes,

for instance Bradshaw’s adaptive medial-axis approximation [77].

Compared to bounding meshes, sphere trees are much harder to fit tightly within

a given tolerance and rather geared towards rough approximation. While sphere

trees are suitable for coarse approximation and very fast collision checking, they are

ill-suited for fine approximations of flat or concave surfaces, where sphere trees may

even require more spheres than the number of triangles of the input mesh [78, p.

139].

Convex Surface Decomposition

Bounding volumes are not the only technique to leverage collision and distance

queries. Ehrmann and Lin perform convex surface decomposition and build up a hi-

erarchical data structure to speed up collision detection and other types of geometric

queries, packaged in the SWIFT++ collision detection library [79]. It is important

to note that surface decomposition is different from regular, convex decomposition

of solids. While their exact convex surface decomposition is specifically integrated

into the SWIFT++ library, our bounding sets of convex polyhedra generation (Sec-

tion 4.4) is a pre-processing step independent from and an orthogonal optimization

to the actual collision detection library in use, suitable for all bounded ε-precise

queries.

While some concepts of mesh simplification can be adapted to bounding approxi-

mations—our bounding mesh approach uses a cost metric for decimation operations

similar to Garland [80]—we focus our discussion of related works on the much nar-

rower field of bounded mesh approximation.

4.2.2 Single-Sided Mesh Approximation

The idea of generating approximate meshes that enclose a more detailed mesh was

probably first outlined in a 1999 patent description by Hoppe [81]. Rather than a

single bounding mesh, Hoppe proposes a progressive hull structure described by a

sequence of edge contractions, which is designed for progressive transmission and

level-of-detail rendering. However, the edge contractions in Hoppe’s progressive

hulls are chosen to minimize the added volume, rather than a metric closer to the

maximum distance or Hausdorff distance from the simplified mesh to the original.

While the added volume metric is easy to compute and minimize, it effectively allows

sharp spikes arbitrarily far away from the original model, because spikes add very

little volume. The added volume metric may be a reasonable choice for creating

4.2. BOUNDING MESHES 49

bounding volume hierarchies as a heuristic for graphics algorithms, it is however

not suitable for providing distance limits on the simplified mesh or ε-precision, as

required for the queries of the KABouM planner.

One such practical application of added volume progressive hulls is that of sil-

houette clipping. In a 1999 technical report, Gu et al. [82, pp. 21–23] generate a

low-resolution bounding mesh that allows fast normal mapping, and then clip its

silhouettes to achieve accurate rendering results with this approximate geometry.

The silhouette clipping approach was popularized by Sander et al. in 2000 [83]. If

detailed, high-quality polygonal models were approximated by low-resolution mod-

els and normal mapping, their silhouette would appear very coarse. Sander et al.

operate on a bounding mesh for texture and normal mapping, and then clip sil-

houettes at full resolution using a precomputed edge hierarchy. Essentially, their

use of bounding meshes is to generate a rendered view at great efficiency. The ren-

dered view is guaranteed to enclose the original model and can therefore be masked

appropriately to achieve a high-quality silhouette.

Platis and Theoharis apply Sander’s added volume progressive hulls to ray in-

tersection point queries with high-resolution meshes [84]. Their method is designed

for ray tracing and collision detection tasks with detailed, non-convex meshes. It is

further elaborated in Platis’ thesis [85] (in Greek). Compared to Sander, they pro-

pose a simpler edge contraction metric to avoid recalculation of all neighboring edges

after a contraction, effectively speeding up progressive hull generation. In addition,

they add two simple checks to avoid generating sharp angle edges or degenerate tri-

angles. A few technical improvements on hard edges were later proposed by Cholt

[86]. The main contribution of Platis and Theoharis is to localize possible areas for

ray intersection points faster than with traditional k-DOPs (discrete oriented poly-

topes) using progressive hulls. While their type of added volume progressive hulls

may contain spikes and are not bounded error approximations, this affects only the

heuristic of the search for ray intersections, and exact intersection points are com-

puted after selective refinement. In a diploma thesis, Ciesla [87] provides a purely

geometric edge contraction scheme that does not optimize a specific cost function.

To the author’s knowledge, the above publications [81, 82, 83, 84, 85, 86, 87] and

the author’s works [12, 11] are the only prior works in single-sided mesh simplifica-

tion, according to an extensive search for publications related to bounding meshes,

progressive hulls, and other search terms.

50 CHAPTER 4. BOUNDING MESHES

Mesh Simplification within Error Limits

Related concepts were derived in order to guarantee tight distance limits for simpli-

fied meshes. An early approach to ε-precise approximation of meshes is covered in

a thesis by Varshney [88]. Cohen et al. [89] then develop this further and describe

the generation of simplification envelopes, which are similar to offset meshes in both

directions. Therefore, simplification envelopes can work in conjunction with most

mesh simplification techniques to guarantee an approximation within a bounded

distance. Guéziec [90] proposes to use tolerance volumes to simplify meshes within

distance boundaries. Contrary to our bounding meshes, these approximations are

not single-sided, but only ε-precise.

4.3 Bounding Mesh Generation

In the following, we derive an algorithm to generate bounding mesh approximations.

While bounding meshes are in no way limited to applications in bounded collision

and inclusion checking, our intention is to implement the bounded geometric pred-

icates defined in the beginning of this chapter (Section 4.1). For this reason, the

design goals for the bounding mesh generation are as follows:

• The mesh approximation must be single-sided, in other words, we generate

inner and outer bounding meshes.

• The distance to the original mesh must be measured such that it can be

bounded to a given limit ε.

• The approximation should seek to keep the distance to the original mesh at

a minimum. Ideally, the bounding mesh approximation is controlled by the

Hausdorff distance to the original or an approximate function thereof.

It turns out that the first condition is comparably simple to achieve in an algo-

rithm that decimates the mesh iteratively. Under the reasonable assumption that

the given mesh is a closed, orientable 2-manifold (rather than an arbitrary set of

triangles), we only need to show that the iteration step creates a bounding mesh that

encloses the previous mesh. Conversely, for creating an inner bounding mesh, we

only need to show that each iteration step yields an inner bounding mesh included

by the previous mesh. For inner bounding meshes, we additionally need to ensure

that self-intersections are either avoided altogether, or at least handled properly in

further processing steps (such as convex decomposition). For a single-sided mesh

4.3. BOUNDING MESH GENERATION 51

approximation, it is therefore a reasonable choice to devise an iterative mesh dec-

imation technique. Most mesh decimation algorithms are iterative [74, 76], and in

a number of them, the decimation step can be adapted to create a bounding mesh.

For those that perform contractions, it is a necessary condition that the contracted

region is a single-sided approximation. This enforces constraints on the placement

of contracted vertices or edges, and discards simple schemes such as mid-point edge

contraction from the list of suitable decimation operators.

Considering the second condition of the above design goals, a distance limit ε

on the approximation can be achieved in two ways. The simplest way to realize

distance limits is to perform checks after each step in an iterative algorithm, which

is of course computationally expensive. In our further discussion, we will describe a

cost function that is an upper bound to the distance function and works as a more

direct distance limit (Section 4.3.5).

From our above list, the third design goal, the distance minimization to the

original mesh, is the hardest to achieve. While the Hausdorff distance is a good

measure for the quality of a mesh approximation, and sufficient to realize ε-precise

bounded geometric predicates, it is a complex, non-smooth function unsuitable for

direct cost function optimization [72, p. 23]. It is clear that the Hausdorff distance

can only be approximated; one such approximation is the quadric error metric, as

defined by Garland and Heckbert [80]. To achieve this, we first derive a bounding

mesh decimation operation in terms of a generic cost function. Then, we introduce

the quadric error metric as a cost function and discuss its optimization specifically.

4.3.1 Bounding Mesh Edge Contraction

Following the discussion on the design goals for a single-sided and distance-limited

mesh approximation, we design our bounding mesh algorithm based on iterative

edge contraction, as summarized in our technical report [12]. An edge contraction

is essentially the replacement of an edge e of two neighboring vertices (v1, v2) by a

single vertex v, with the neighboring triangles being adjusted to this new geometry.

For a bounding mesh edge contraction, the new neighborhood must enclose the

older one. To achieve this, it is sufficient to restrict v to be above the planes of

the neighboring triangles. Note that in bounding mesh approximation, v cannot

generally be the midpoint of (v1, v2) in order to meet this criterion, as opposed to

simpler contraction schemes.

A rather important choice in our bounding mesh algorithm is the design of the

edge contraction cost function E : (e,v) →→ R, where e is an edge of points (v1,v2)

that are contracted to a single vertex v, as illustrated in Figure 4.2 [12]. The goal

52 CHAPTER 4. BOUNDING MESHES

v1
v2

(a) Edge (v1, v2) with neighboring trian-
gles

v

(b) Local bounding mesh with new ver-
tex v

Figure 4.2: Bounding mesh edge contraction.

of the bounding mesh edge contraction is to find a contraction point v∗ that is

guaranteed to be outside the mesh and has minimal cost E(e,v∗). Denoting P as

the neighboring planes of a vertex, we can formulate the search for the contraction

point v∗ as a constrained minimization problem

argmin
v∗

E((v1, v2),v
∗) s. t. ∀p ∈ P (v1) ∪ P (v2) : pTv∗ ≥ 0 . (4.2)

Contrary to all earlier approaches to bounding mesh generation [81, 82, 83, 84,

86], we do not formulate E in terms of the volume added by the edge contraction.

The added volume is a sum of tetrahedra placed on P (v1) ∪ P (v2), and therefore a

function linear in v, which can be solved by linear optimization [82, 84]. While some

computer graphics applications do not require approximations at close distances and

can be leveraged by volume-minimized bounding meshes [83, 84], added volume is

too weak of an estimate for the Hausdorff distance. Most importantly, the added

volume may become infinitely small in common cases such as sharp angles or thin

triangles, effectively allowing v to move infinitely far away from the original mesh

and generating spikes in the bounding mesh. For this reason, volume-minimized

bounding meshes are not suitable for applications with distance limits, including

our bounded geometric predicates for robot task and motion planning.

4.3.2 Quadric Error Metric

The quadric error metric closely reflects the Hausdorff distance of an edge contraction

[72, p. 79f.], especially in comparison to the added volume cost function used in

earlier approaches to bounding mesh generation [81, 82, 83, 84, 86].

4.3. BOUNDING MESH GENERATION 53

v1
v2

(a) Edge with neighboring planes (b) Quadric cost function Q with ellip-
soidal isosurfaces

v′

(c) Example of a case m = 2 minimizer

v′

(d) Local bounding mesh

Figure 4.3: Bounding mesh edge contraction with a quadric cost function. [12]

In its most general form, a quadric Q maps a 3D coordinate v ∈ R3 to a squared

distance measure d2 ∈ R ≥ 0.

Q : v →→

vT 1


Q


v

1


(4.3)

A more mathematically complete definition for our notation of quadric functions is

given in Appendix A.1, together with their basic properties, operations, and distance

measures to basic geometric shapes.

The general approach of edge contraction with quadric costs is to approximate

the Hausdorff distance of the contraction by the simpler sum of distances from the

new vertex v to the neighboring planes P (e) of the contracted edge. Let d denote

the distance of two geometric shapes. Then, the quadric cost of the edge contraction

can conveniently be written as a multiplication with a symmetric 4-by-4 matrix, the

quadric Q(e).

E(e,v) =


p∈P (e)

(d(p,v))2 = vT


p∈P (e)

ppT v = vTQ(e) v (4.4)

Figure 4.3 visualizes the behavior of this type of cost function. A quadric possesses

(possibly degenerate) ellipsoidal isosurfaces, as shown in Figure 4.3b.

54 CHAPTER 4. BOUNDING MESHES

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1

1

2

2

2

2

3 3

3

3

3

3
4

4

4

4

(a) Quadric Q1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1

1

2

2

2

2

3

3

3

3

3

3

4

4

4

4

(b) Quadric Q2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1

1

1

1

2

2

22

2

3

3 3

3

3

3

3

3

4

4

(c) min(Q1, Q2)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

2

3

3

3

3

4

4

4

4

4

(d) The sum Q1 + Q2 over-
estimates min(Q1, Q2)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1
2

2

2

3

3

3

3

4

4

4

4

4

4

(e) A quadric with adjusted
constant term is a tight ap-
proximation of min(Q1, Q2)
at one point

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

2

2

3

3

3

3

3

4

4

4
4

4

4

(f) A quadric with opti-
mized quadratic, linear, and
constant terms fits even bet-
ter to a larger region

Figure 4.4: The sum of two quadrics generally overestimates their minimum. Tighter
approximations of min(Q1, Q2) can be achieved by adjusting the constant term or all coef-
ficients of the quadric.

4.3.3 Quadric Cost for Compound Shapes

It is a rather important property of the cost function how it is affected by contracted

and newly created edges. We cannot directly re-calculate Eq. 4.4 for modified edges,

as this would ignore the distance to the original mesh, and allow it to move further

away in each iteration. The most commonly proposed update operation for quadric

costs on the decimated mesh is the addition of the quadrics, which is effectively an

upper estimate of the original sum of distances to all neighboring planes.

Q(v′) = Q(v1) +Q(v2). (4.5)

This approximation greatly overestimates the Hausdorff distance after several neigh-

boring edges have been contracted; it may even overestimate Eq. 4.4 by a factor of

three [80] and potentially causes suboptimal bounding meshes as a result.

4.3. BOUNDING MESH GENERATION 55

The underlying issue is that a quadric can give the exact squared distance only

for the primitive shapes points, lines, or planes. In contrast, distances to more

general compound shapes can only be approximated, let alone the Hausdorff distance

between two meshes. In general, this problem can be reduced to approximating a

compound of two quadrics Q1 and Q2, whose distance is min(Q1, Q2), by an upper

approximation Q ≽ min(Q1, Q2). (For details on the relation ≽, see Appendix A.1.)

An example of two simple quadrics is shown in Figure 4.4a. The distance to

their compound shape (Figure 4.4c) is only piecewise quadratic, and quadrics can

only approximate this type of function. The simple sum Q1 +Q2 would be a weak

upper bound (Figure 4.4d), distances to triangle meshes or compounds of primitive

shapes would be largely overestimated, especially after several additions.

Approximation with Adjustment of the Constant

A slightly tighter approximation is possible with an adjustment of the constant term

of the quadric. Starting with the simple sumQ = Q1+Q2, we can reduce its constant

term Q4,4 such that it contacts min(Q1, Q2) in at least one point, for which we choose

the minimizer m = argmin(Q). (A closed-form solution for this minimum operator

is given in Appendix A.1.2.) Now, we can safely subtract max (Q1(m), Q2(m))

from Q4,4 in order to achieve the contact point Q(m) = min(Q1(m), Q2(m)). Since

the curvature of Q is greater or equal than that of Q1 and Q2, it is an upper

approximation Q ≽ min(Q1, Q2), as intended. Resuming our discussion above,

Figure 4.4e shows an example of this slightly improved approximation in comparison

to the simple addition of quadrics.

Approximation with Adjustment of all Coefficients

Since we can minimize the constant of a quadric, an additional step would be to

adjust the remaining coefficients of the quadric to achieve more contact points and

obtain an approximation that is locally optimal. Obviously, there is no clear, global

optimum to fit a quadric to shapes like Figure 4.4c, but we can construct a locally

optimal approximation invariant to transformation and symmetry, described in the

following.

To achieve invariance to transformations, we first factorizeQ1+Q2 to T
TST and

obtain a reference frame T . For the derivation of the factorization procedure, refer

to Appendix A.1.2. Our approach is to choose this T as a position and an orientation

for the quadric Q to be constructed. Note that, when Q1 and Q2 are sufficiently

close and similar, their representations in frame T , S1 and S2, will already be almost

diagonal. In order to construct Q, we first bound its quadratic terms and then its

56 CHAPTER 4. BOUNDING MESHES

linear terms, taking care of dependencies between the coefficients. First, we use the

fact that a symmetric matrix S can be bounded by a diagonal matrix S′.

xTSx = xT


s11 s12

s12 s22


x ≤ xT

√
s211+s212 0

0
√

s212+s222


x = xTS′x (4.6)

With this, we can diagonalize the upper left 3-by-3 quadratic parts of S1 and S2.

Of these diagonalized matrices, we may take a simple maximum to obtain S′.

In a second step, we ensure that Q bounds the linear terms of Q1 and Q2. We

use the fact that a linear term tx can be bounded by a quadratic term sx2 + c.

sx2 + c =
t

2l
x2 +

tl

2
=

t

2


x2

l
+ l


=

t

2


x√
l
−
√
l

2

+ tx ≥ tx (4.7)

Here, l > 0 is a free parameter that allows us to choose at which distance the

approximation is exact.

Applying these two steps, we can construct a diagonal matrix S′′ that is greater

than both T−TQ1T
−1 and T−TQ2T

−1. This also holds for the final result Q =

T TS′′T . By construction, this type of approximation is invariant to transformation

and symmetry, and optimizes all coefficients of the quadric. Figure 4.4f shows an

example of the result, which fits well to a larger region than just its minimum

(Figure 4.4e), controlled by parameter l.

4.3.4 Optimal Edge Contraction

In the previous section, we discussed the choice of the edge contraction cost function

E, and we designed a quadratic cost function Q as a feasible approximation of the

Hausdorff distance. In this section, we derive an efficient closed-form solution to

minimize these quadric costs and to find a minimizing edge contraction point outside

the local mesh. Obviously, the problem of finding the optimal edge contraction point

v outside of the local mesh P (v1)∪P (v2) and with minimal cost vTQv is, in general,

a quadratic minimization with linear inequalities:

argmin
v

vTQ(e) v s. t. ∀p ∈ P (v1) ∪ P (v2) : pTv ≥ 0 (4.8)

To derive a stable and efficient solution, we exploit the geometric structure of

this problem. Since the unknown v is only a point in 3D space, it can at most

be constrained by three linearly independent inequalities. Because of this, it is

not necessary to solve the generalized quadratic problem with potentially many in-

equalities. We rather notice that there exists a subset of [0..3] inequalities, whose

4.3. BOUNDING MESH GENERATION 57

minimizer equals the minimizer of the general problem. Therefore, we can assume

that m ∈ [0..3] inequalities hold as equalities, and exhaustively search in all sub-

spaces that are given by all these subsets of equalities. More precisely, we enumerate

all m-subsets of neighboring planes P (v1) ∪ P (v2). For each subset, we assume its

m planes constrain the minimizer, and solve for a candidate minimizer in the linear

subspace formed by the m equalities. From all candidate minimizers, we select those

that fulfill all other inequalities, of which we pick the cheapest, which is the global

minimizer v. With this approach, we effectively reduce the quadratic problem with

inequalities to a set of simpler quadratic problems with only m equalities.

Closed-Form Solution of the Edge Contraction

Edge contraction points can be optimized by solving a set of quadratic optimization

problems with up to three equality constraints. In the following, we follow this

idea to derive a generic closed-form solution and a more stable specialized solution.

Finally, we propose an algorithm to solve the bounding edge contraction problem.

Considering the neighboring planes of the edge (v1,v2) that is to be contracted,

we denote N as their normals, and d their signed distances to the origin. With this

notation, we would like to find the optimal contraction point v. In order to ease

calculations, we define v in homogeneous coordinates, i.e. v ∈ R3 × {1}. In this

notation, the contraction point solution is then written as follows:

min
v

vTQv s. t.


N

−d

T

v ≥ 0 ∧

0 0 0 1


v = 1 (4.9)

Following our previous discussion, we may assume that the global minimizer v

is constrained by a subset of m ∈ [0..3] of the above inequalities, and these subset

constraints hold as equalities. In the exhaustive search of our algorithm, we can

therefore solve for candidate minimizers x ∈ R3 × {1} with respect to each m-

subset, and obtain the global minimizer by comparison. Let m denote the number

of equality constraints of a given subset, and

NT −dT


now denote the equalities

of this subproblem. Then, we are to solve

min
x

xTQx s. t.


N

−d

T

x = 0 ∧

0 0 0 1


x = 1 . (4.10)

A generic way to solve this subproblem would be to introduce Lagrangian multipliers

λ ∈ Rm+1 and add the summand λT

NT −dT 0
0T 1 −1


[x1] to the optimization function,

58 CHAPTER 4. BOUNDING MESHES

v′

(a) m = 0

v′

(b) m = 1

v′

(c) m = 2

v′

(d) m = 3

Figure 4.5: An optimal edge contraction point may be bounded by zero, one, two, or
(at least) three planes, leading to four different cases in the solution. Intuitively, these
constraints describe linear subspaces (shown in blue). In a minimizer v′, the constraint
subspace must be tangential to a surface of equal costs (shown in light red).

effectively defining an unconstrained problem. After symbolic differentiation, we can

reduce its minimization to solving the following linear problem of dimension m+ 5:


Q

N 0

−d 1

NT −dT
0

0T 1



x

λ


=


0

1


(4.11)

However, the Lagrangian solution is rather badly conditioned, especially for m = 3,

because the neighboring plane normals inN are often parallel or close to parallel. To

overcome these numerical problems, we devise a closed-form solution that explicitly

models the constraint subspace and minimizes in that subspace. The direct solution

operates on the matrix Q, which is symmetric and positive definite, and therefore

better conditioned.

4.3. BOUNDING MESH GENERATION 59

Direct Subspace Solution of the Edge Contraction

For the direct linear subspace solution, we substitute x by a vector y ∈ R3−m that

spans the constrained subspace:


x = Ay + b

NTx = dT


(4.12)

With this substitution, the minimization problem is reduced to an unconstrained

one of dimension 3−m

min
y

yTATQAy + 2QAb+ bTQb (4.13)

which is solved by the simple linear system

ATQA y = −ATQb . (4.14)

Of course, in order to perform the substitution, we need to calculate a valid point b in

the subspace and also its range matrixA. A generic solution would be to numerically

solve for b = −pinv(N)d and A = null(N), where pinv denotes the Moore-Penrose

pseudoinverse and null the nullspace. However, it is substantially more reliable and

more efficient to exploit the geometric meaning of this substitution and solve all

four cases m ∈ [0..3] symbolically. Figure 4.5 visualizes these four cases with their

different types of constraint subspaces. The quadric Q can be thought of as surfaces

of equal costs, generally shaped as ellipsoids. As an example, Figure 4.5a depicts

surfaces of equal costs as light red ellipsoids, with the minimizer v′ located in the

center. Discriminating the four cases of m = [0..3], we can derive a closed-form

definition of the linear subspaces Ay + b.

Case m = 0: Even without any constraints, it is still useful to apply the substi-

tution in order to obtain a direct solution in y without homogeneous coordinates.

Such a substitution can be obtained with

A = I4×3, b =

0 0 0 1

T
. (4.15)

Case m = 1: When the subspace is a plane, its range may be calculated from the

vector product of its normal n1 with an arbitrary unit-length axis e. Implementation

should choose from two axes, favoring the more linearly independent axis of the

two with smaller
nT

1 e
, in order to ensure numerical stability. With this, a valid

60 CHAPTER 4. BOUNDING MESHES

input : Quadric cost Q and neighboring planes P of an edge
output: Edge contraction point v and its cost
cost←∞;
foreach [0..3]-subset P ′ = [NT − dT] of neighboring planes P do

calculate A and b from P ′ (Equations (4.15) to (4.18));
solve y (Equation (4.14));
x← Ay + b;
if PTx ≥ 0 and xTQx < cost then

v ← x;
cost← xTQx;

end

end

Algorithm 1: Bounded edge contraction point optimization

substitution is constructed by

A =


e× n1 e× n1 × n1

0 0


, b =


−dn1

1


. (4.16)

Case m = 2: When the subspace is a line, it can be constructed by

A =


n1 × n2

0


, b =


−

NNT

−1
Nd

1


. (4.17)

Case m = 3: For three constraints, the subspace collapses to a single point b. The

minimizer can directly be calculated by

x = b =


−N−Td

1


. (4.18)

With these four cases, we can completely solve the general problem from Eq. 4.10.

Considering computational efficiency, it is worth to note that all calculations of A, b

and solving Eq. 4.14 for y involves only inverting matrices up to dimension three. In

total, all of the above cases can be computed using only a few hundred floating-point

operations.

4.3.5 Bounding Mesh Algorithm

After deriving a cost function that can guide edge decimation and optimize edge

contraction points, we finally give a complete overview of the bounding mesh algo-

rithm. In general, the bounding mesh algorithm takes a greedy approach, similar to

4.3. BOUNDING MESH GENERATION 61

input : Mesh M and tolerance ε
output: Bounding mesh of M
foreach edge e of mesh M do

Q(e)←


p∈P (e) ppT;

cost← minv E(e, v) (Algorithm 1);
Add (e, cost) to priority queue;

end
while true do

Pop cheapest e from priority queue;
v∗ ← argminv E(e, v) (Algorithm 1);
if E(e,v∗) > ε2 then

return M ;
end
Contract edge e to vertex v∗;
Re-calculate Q(e), cost(e) for modified edges (Section 4.3.3);

end

Algorithm 2: Bounding mesh generation

a wide range of iterative mesh simplification schemes [76]. The iterative bounding

mesh routine is outlined in Algorithm 2. Apart from the constraints and cost func-

tion, this routine is identical to the one in [80]. Estimated costs of edge contractions

are first calculated for all edges and stored in a priority queue. After this initializa-

tion, the cheapest edges are iteratively contracted until a maximum cost or a target

number of vertices is reached.

Internally, the bounding mesh algorithm makes several function calls to the

bounded edge contraction optimization, which is outlined in Algorithm 1. This

procedure essentially follows the closed-form optimization devised earlier in Sec-

tion 4.3.4, which ensures numerically stable calculation of the cost function mini-

mum and its minimizer, the optimal edge contraction point. For this, Algorithm 1

enumerates the subsets of inequalities and determines the global minimizer. In each

subspace, it calculates the minimizer x by direct geometric solution from Equa-

tions (4.15) to (4.18). Finally, Algorithm 1 returns the optimal edge contraction

point v and its cost. The cheapest edge is then contracted until a global distance

limit is reached (Figure 4.3). Each contraction triggers the costs of the modified

edges being re-calculated, as described in Section 4.3.3.

Evaluation

While the bounding mesh algorithm is certainly not restricted to robot task and

motion planning, it was developed with the intention to simplify the geometry of

62 CHAPTER 4. BOUNDING MESHES

(a) Original mesh with
108,419 vertices

(b) Bounding mesh with
20,000 vertices, ε < 0.0034m

(c) Bounding mesh with
10,000 vertices, ε < 0.0062m

(d) Bounding mesh with
5,000 vertices, ε < 0.0090m

(e) Inner bounding mesh
with 20,000 vertices, ε <
0.0028m

(f) Inner bounding mesh
with 10,000 vertices, ε <
0.0046m

(g) Inner bounding mesh
with 5,000 vertices, ε <
0.0088m

Figure 4.6: A series of outer and inner bounding meshes of a Mitsubishi robot.

4.3. BOUNDING MESH GENERATION 63

Table 4.2: Bounding meshes in both directions of several geometric models of industrial
manipulators. A quadric cost of plane distances with adjustment of the constant term is
optimized (Section 4.3.3).

Number of
vertices n

Distance from original to
approximation [mm]

Distance from approxima-
tion to original [mm]

min mean max min mean max

Mitsubishi, original triangulation, bounding box diagonal: 1239.37mm
108 419 (Figure 4.6)

Outer bounding meshes
20 000 0 0.082 1.795 0 0.262 3.413
10 000 0 0.222 3.018 0 0.580 6.215
5 000 0 0.546 5.858 0 1.239 9.048
2 500 0 1.284 12.522 0 2.595 20.084

Inner bounding meshes
20 000 0 0.060 1.788 0 0.333 2.854
10 000 0 0.167 3.039 0 0.739 4.634
5 000 0 0.419 5.071 0 1.642 8.809
2 500 0 0.943 10.788 0 3.809 17.377

Kuka, original triangulation, bounding box diagonal: 3443.75mm
251 117 (Figure B.1 on page 136)

Outer bounding meshes
20 000 0 0.636 7.685 0 0.934 22.871
10 000 0 2.066 18.070 0 2.733 24.920
5 000 0 4.900 30.004 0 5.890 52.727
2 500 0 10.793 75.640 0 12.527 81.235

Inner bounding meshes
20 000 0 0.428 7.537 0 1.891 26.012
10 000 0 1.462 12.643 0 6.541 141.080
5 000 0 3.442 23.578 0 12.985 153.547
2 500 0 5.565 52.924 0 33.452 229.243

Comau, original triangulation, bounding box diagonal: 3719.08mm
241 190 (Figure B.2 on page 137)

Outer bounding meshes
20 000 0 0.335 6.704 0 0.984 18.010
10 000 0 1.320 15.021 0 3.223 43.363
5 000 0 3.672 23.489 0 6.547 49.266
2 500 0 7.909 42.383 0 11.053 70.658

Inner bounding meshes
20 000 0 0.330 7.681 0 1.328 14.319
10 000 0 1.439 14.056 0 4.284 37.302
5 000 0 3.309 28.341 0 8.521 52.652
2 500 0 5.509 60.743 0 14.868 95.682

64 CHAPTER 4. BOUNDING MESHES

robots and objects conforming to the bounded geometric predicates, as defined at

the beginning of Section 4.1. We therefore focus our evaluation on the type of model

that is usually the most complex in this domain, the robot manipulator itself. First,

we discuss the quality of bounding meshes of several robot geometries in terms of

the Hausdorff distance metric. After that, we briefly compare the different types of

cost functions on a larger set of shapes.

Figure 4.6 shows a typical industrial manipulator with several outer and inner

bounding meshes. The original triangulation has 108,419 vertices. As typical, trian-

gles are unevenly distributed, with many thin triangles on curved or filleted surface

regions. The bounding mesh algorithm can simplify this type of mesh to a fraction

of the number of vertices while assuring a distance of a few millimeters. Even for

only 5,000 vertices to represent the whole robot model, the bounding meshes remain

closer than 0.01m to the original, whose height is roughly 1m. It is worth noting

that the robot geometry was not pre-processed for this experiment, it contains a

number of small openings and threaded holes, and many triangles with high aspect

ratio, which is typical for meshes exported from computer-aided design software.

Distances were measured as Hausdorff distances between a high-quality triangula-

tion and the respective bounding mesh. The current version of the implementation

performs at the order of 10,000 edge decimations per second on a 2.8GHz desktop

computer. Its memory requirement scales proportionally to the complexity of the

input mesh, with approx. 25MB of memory for each 10,000 vertices.

More detailed results for different types of robot geometries are shown in Ta-

ble 4.2. In this evaluation, triangulated meshes from three robots from different

manufacturers are simplified to both inner and outer bounding meshes. Again,

meshes were not pre-processed, so all three contain small openings, thin triangles,

and other typical imperfections. The bounding mesh algorithm was configured to

minimize plane distance costs and approximate costs by quadrics with adjustment

of the constant term (Section 4.3.3). Distances were measured in both directions

from and to the original mesh to show both components of the Hausdorff distance

individually. Bounding meshes of the first example, the Mitsubishi robot, are de-

picted in Figure 4.6; the results of the Kuka and Comau robot meshes can be found

in Appendix B.1. As discussed earlier, the Mitsubishi robot can be compressed to

millimeter accuracy at a fraction of its vertex count. The second model, the Kuka

robot, is an example for a very detailed model, as it includes many fine, round ca-

ble structures. Compared to the simpler Mitsubishi mesh, its bounding meshes

require more vertices to guarantee distance limits. To ensure a Hausdorff distance

of less than 1% of the model size, 10,000 vertices are required for an outer bounding

4.3. BOUNDING MESH GENERATION 65

mesh. For the Kuka model with its many thin structures, inner bounding meshes

require roughly double the numbers of vertices to provide a similar Hausdorff dis-

tance as outer bounding meshes. The third model of the evaluation, the Comau

robot, possesses thin brackets at its tool shaft, but is otherwise of average geometric

complexity, comparable to the Mitsubishi robot. With regard to its larger size, the

approximation results are good, with roughly 11,000 vertices needed to maintain 1%

precision for an outer bounding mesh.

For all three robot geometries, the bounding mesh algorithm provides a single-

sided approximation with 1% precision at one tenth of the vertex count. Because

the discussed geometry models originate from different manufacturers, and other

trials with additional meshes did not reveal any further issues, we are sure that the

bounding mesh algorithm can generally approximate a robot geometry by a fraction

of its vertex count at high precision.

Based on our evaluation, we formulate the following result.

Proposition 1. The bounding mesh algorithm can reduce most robot geometries

to an enclosing single-sided approximation at the order of 4,000–12,000 vertices

within a precision of 1% of the diagonal of the geometry. In relative numbers, most

triangulations from CAD software can be compressed by a factor of 10–20 at this

precision. The resulting complexity depends on the shape; smoother shapes allow

higher compression.

To complete our evaluation of the bounding mesh algorithm, we also compare

different cost functions and methods for adding costs after a decimation. For this,

we measure Hausdorff distances of the bounding meshes of a larger set of shapes

under different cost functions. As cost functions, we test the simple sum-of-point-

distances Etriangles and the previously described Eplanes functions, both with and

without adaptation of the constant term of the quadric. All measurement results

are listed in Appendix B.2. For all shapes, the cost function Eplanes provides slightly

better approximations than Etriangles. The adaptation of the constant does not

lead to significantly different results for both cost functions. This result applies to

both outer and inner bounding meshes. Besides differences between cost functions,

the vertex–distance graphs (Appendix B.2) also show that inner bounding meshes

generally require more vertices than outer bounding meshes at the same precision.

Furthermore, we can observe that 3D scans can be decimated particularly well; both

the Stanford Bunny and the Dragon scans can be compressed even higher than

the triangulated meshes.

66 CHAPTER 4. BOUNDING MESHES

Limitations

Even though the bounding mesh algorithm was thoroughly tested on a number of

real robot geometry models from different manufacturers, it is still worth discussing

its limitations. Some limitations are due to the general design of the algorithm;

other issues may only arise in case of degenerate input meshes and are amenable to

future improvements of the implementation.

Degenerate meshes are generally an issue for geometric algorithms, with some

taking precautions or performing additional checks to handle special cases. In gen-

eral, the bounding mesh algorithm assumes that the input mesh is a triangulated,

orientable 2-manifold, or a disconnected set of multiple such meshes. If the input

contains a set of meshes, the algorithm takes no advantage of merging overlaps, but

rather treats all connected meshes independently. It will distribute costs over con-

nected components to minimize the total costs, which may be a desirable behavior

for a robot geometry with multiple rigid bodies. The most important property of

this assumption is that the given mesh must be closed. Our implementation does

accept open meshes, but it will avoid modifying the border. Strictly speaking, colli-

sion and inclusion predicates are no longer defined for open meshes. However, there

are many practical examples where meshes of industrial robots contain tiny holes,

and this strategy succeeds in constructing a bounding mesh that allows a correct,

ε-precise bounding convex decomposition, and bounded geometric predicates will

work as if these holes were closed.

Even when input meshes fulfill all specifications, some qualitative properties may

degrade performance. Since the proposed bounding mesh algorithm performs edge

contractions in a greedy strategy, it does not improve the topology of a given mesh,

as opposed to global or re-meshing strategies. Vertices of high degrees (vertices with

high numbers of adjacent edges) affect the efficiency of the algorithm because of

the high number of inequalities in the edge contraction optimization (Eq. 4.2). An

example for a high-degree vertex would be the apex of a triangulated cone. Also, tri-

angles with extreme aspect ratios may affect the quality of the simplification. When

multiple such triangles appear in a neighborhood, especially when their orientations

differ, edge contractions become forbiddingly expensive. In practice, triangulation in

state-of-the-art computer aided design systems is aware of these qualitative features

and can produce meshes suitable for bounded decimation.

Distance Limiting Cost Functions

In order to generate bounding meshes within a given distance limit ε, the cost

function in Algorithm 2 needs to fulfill two requirements: First, it must not be

4.4. BOUNDING SETS OF CONVEX POLYHEDRA 67

smaller than the Hausdorff distance. Second, it needs to preserve this property after

an edge contraction. Two types of quadric cost functions are candidates for this set

of requirements, the sum of squared distances to planes as in Equation 4.4, denoted

as Eplanes, and the sum of squared distances to circumcenters of triangles, denoted

as Etriangles.

Eplanes is an upper bound to the point–mesh distance if no acute dihedral angles

are present. One can easily verify that if all dihedral angles are obtuse, the sum

of squared distances to neighboring planes is greater than the squared distance to

the mesh. An alternative to achieve this property is to add plane distance costs to

all sharp edges, perpendicular to the edge normal [72, p. 83]. After these quadric

costs have been added in the initialization of Algorithm 2, addition of quadrics in

modification steps will preserve the upper bound. For the cost function Etriangles, it is

obviously an upper bound to the point–mesh distance for all meshes, albeit a weaker

one. In addition to the distance limitation, it has the notable property that the group

of convex meshes is closed under the bounding mesh operation with cost function

Etriangles. (For a detailed discussion, see Appendix A.2.) In other words, for a given

convex mesh, a bounding mesh decimation with the cost function Etriangles will result

in a convex bounding mesh. Apart from the invariance to position, orientation, scale,

and symmetry, this convexity invariance is an interesting property of this variant of

the algorithm.

Conclusion

In conclusion, the bounding mesh algorithm can simplify arbitrary meshes with a

purely singled-sided approximation. While the main motivation for our research

in mesh simplification is to speed up robot collision checking and related queries

without risking false negatives, the algorithm is not limited to robotics and more

generally applies to computer geometry. For bounding mesh edge contractions, we

propose a quadric cost function, and an adapted cost function with slight advantages

towards convex meshes. Our evaluation indicates that triangulated robot geometries

can be simplified to a fraction of their vertex count at low distance errors. In all

cases, the approximation is guaranteed to be single-sided, generating outer or inner

bounding meshes.

4.4 Bounding Sets of Convex Polyhedra

While a bounding mesh is already a useful mesh simplification by itself, it becomes

a particularly powerful approach to efficient geometric queries when combined with

68 CHAPTER 4. BOUNDING MESHES

convex decomposition. The bounding mesh simplification effectively reduces the

vertex count of complex meshes and guarantees to enclose the original mesh, which

is required for safe geometric queries. However, its output is generally non-convex

for non-convex input, and therefore inefficient to process in collision and inclusion

checking. On the flipside, new convex decomposition techniques were recently de-

veloped that can segment non-convex input models into a small set of convex shapes

[91, 92]. Convex decomposition alone does not reduce complexity in terms of vertex

count, it only segments vertices into approximately convex clusters, and only a small

number of vertices are removed in subsequent convex hull operations. Obviously,

the combination of convex decomposition and the bounding mesh algorithm can

both decompose and simplify arbitrary meshes and generate an efficient structure

for collision and inclusion queries, a bounding set of convex polyhedra.

Definition 3 (Bounding set of convex polyhedra). For a given mesh M , we may

create bounding sets of convex polyhedra M ′ with the following properties.

1. M ′ =


n convex(Vn), it is a union of convex hulls.

2. M ′ ⊇M , it encloses the original model.

3. M ′ is a simplification of M ; it should have fewer vertices and fewer convex

polyhedra than an exact decomposition.

Furthermore, we may characterize M ′ as ε-precise if the Hausdorff distance d(M,M ′)

is no larger than a given parameter ε.

In this section, we will first discuss the state of the art in convex decomposition.

Then, we present a method for generating bounding sets of convexes, evaluate our

approach in several examples, and discuss its general properties.

4.4.1 Algorithms for Convex Decomposition

Decomposing a non-convex mesh into a small set of convex polyhedra is a challenging

problem. Chazelle et al. have shown that an exact decomposition into a minimal set

of convex meshes is NP-complete [93] by constructing a mesh whose decomposition

solves a given Boolean satisfiability problem. Despite this inherent difficulty, sev-

eral heuristics have been proposed for decompositions into a non-minimal number

of convexes [93, 91, 92]. In a more recent work, Lien and Amato argue that exact

decomposition necessarily generates high numbers of clusters, and recommend to

relax the problem to an approximately convex segmentation [91, 94]. Developing

a hierarchical, approximate algorithm, Lien and Amato demonstrate that even a

4.4. BOUNDING SETS OF CONVEX POLYHEDRA 69

slight relaxation can dramatically reduce the number of segments generated. Their

algorithm identifies concave regions and partitions these through planar cuts, and

follows a divide-and-conquer approach until all partitions’ residual concavities sat-

isfy an approximation parameter. Soon after Lien and Amato’s pioneering work,

Mamou and Ghorbel recognize that planar cuts offer only limited choices in the

bisection step, and devise a more general convex clustering based on decimation of

the dual graph [92], named HACD. Essentially, Mamou and Ghorbel’s approximate

convex decomposition decimates edges on the dual graph of triangles in order to

identify nearly convex clusters. The decimation follows a weighted cost function

of a concavity and an aspect ratio measure. The aspect ratio cost is designed to

dominate the first few iterations and to quickly simplify the dual graph; after that,

the concavity measure leads the segmentation by design. Evaluation shows a clear

improvement over Lien and Amato’s approach [92]. While the implementation of

HACD applies a mesh simplification strategy that does not preserve the volume of

the input mesh, we can easily replace this processing step by our bounding mesh

simplification for our application of bounding convex decomposition. An alternative,

sampling-based approach is proposed by Asafi et al. [95]. Their method is to cluster

segments of points that are mutually visible, and is geared towards more general

shapes and point clouds.

Very recently, Mamou developed a variant of the hierarchical approximate con-

vex decomposition whose segmentation operates on a voxel grid, named V-HACD

[96]. Compared to the original HACD approach [92], it seems to operate faster on

detailed meshes, and more robustly on meshes with high genus. Both HACD and

V-HACD have been shown to generate results superior to existing methods in terms

of accuracy and numbers of convex segments [92, 96], but also stand out in compu-

tational speed, and can therefore be regarded as the state of the art in approximate

convex decomposition.

4.4.2 Bounding Convex Decomposition

With the above algorithms for approximate convex decomposition and our bounding

mesh algorithm, it is straightforward to generate bounding sets of convex polyhedra

with the properties in Definition 3. In order to ensure the boundedness criterion,

M ′ ⊇ M , we need to modify all mesh simplification steps and apply the bounding

mesh algorithm instead, and configure convex decomposition to generate full convex

hulls rather than lower-vertex heuristics. We can then generalize the bounding set

of convex polyhedra approximation to the following procedure, which applies to a

group of convex decomposition algorithms [92, 96, 91]:

70 CHAPTER 4. BOUNDING MESHES

1. For convex decomposition algorithms that are susceptible to high vertex counts

[92, 91], we pre-process the input to a closely approximating bounding mesh,

at distance at the order of ε/10. (V-HACD [96] scales well with high numbers

of vertices, allowing this step to be omitted.)

2. We perform the approximate convex decomposition as in [92, 96, 91], with

parameters set to disable all further mesh decimation and to output full convex

hulls or convex segments.

3. Finally, we simplify the convex decomposition with the bounding mesh algo-

rithm up to a desired approximation distance.

4.4.3 Evaluation

In order to measure the quality of this approach, we first consider the results of the

bounding set of convex approximation of the Mitsubishi model, the same model as

in the bounding mesh discussions. After this practical example, we try to identify

more general properties of bounding sets of convex polyhedra and discuss quantita-

tive bounds on ideal bounding decompositions.

Figure 4.7 shows the experimental results for the Mitsubishi example. In robot

motion planning, the usual approach is to approximate rigid bodies by convex hulls

(Figure 4.7b). While this method is simple, reliable, and allows efficient queries,

it cannot guarantee any distance limits. Even though the example model is rather

well suited for convex hull approximation with its smooth shape and few concavities,

this approximation introduces a large distance error of 53.6mm (4.3% of the height

of the model). Besides this, the convex hull operation can only simplify vertices in

concave regions, leaving a large fraction of the original complexity, with a reduction

by a factor of 5 in the example. Bounding sets of convex polyhedra can be seen as

a generalization to a union of multiple such convex hulls, which is further simplified

in terms of the vertex count. In the example in Figure 4.7c, it is evident that most

shapes allow a tight approximation by few convex hulls. Furthermore, the number

of vertices is reduced dramatically, for instance by a factor of 115 in Figure 4.7d. All

this approximation comes at a reasonable precision of 35mm (2.8% of the height of

the model). Since this distance can be controlled by parameters of the algorithm,

the properties in Definition 3 are fulfilled.

The resulting bounding convex decompositions shown in Figure 4.7 are only

part of a larger evaluation, whose results are summarized in Table 4.3. In order

to investigate the complexity and accuracy of the approximation of the bounding

convex decomposition more generally, we measure these values under variation of

4.4. BOUNDING SETS OF CONVEX POLYHEDRA 71

all relevant parameter settings. The decomposition is performed by V-HACD [96],

whose most influential parameters are resolution of voxel sampling, recursion depth,

a residual concavity limit c, and a parameter α to balance between decomposition

and convex hull operations. The first two parameters and α can trivially be set

for optimal accuracy at the expense of offline computation time, while parameter

c strongly affects the final number of convex polyhedra. For the bounding mesh

algorithm (Section 4.3.5), there exist only the target number of vertices n as a

parameter and a discrete choice of a cost function. Since the goal is to approximate

convex polyhedra, we choose the distance-limiting cost function Etriangles, as defined

in Section 4.3.5, which preserves the convexity of the given mesh.

From Table 4.3, we observe that convex decomposition is already an approxima-

tion superior to simple convex hulls, both in terms of error distance and complexity.

Subsequent bounding meshes reduce the vertex count by more than one order of

magnitude, and at a negligible error. For V-HACD, there exists a “sweet spot” at

c ≈ 10−4 to generate a modest number of convex segments at a low distance. For the

bounding mesh approximation, an additional distance limit of ε ≈ 0.005m reduces

the vertex count by a factor of ten. Since these two steps are independent, future

refinements of V-HACD—which currently introduces the larger part of the distance

error—will directly enhance the overall quality. A further property of the bounding

set of convex polyhedra approach is the low maximum number of vertices per con-

vex body. In applications where worst-case complexity is critical, such as real-time

collision avoidance, only low maximum numbers can guarantee performance, and

these are dramatically lower than in previous approaches. This worst-case benefit

will further be shown in a path planning experiment below.

In total, the bounding set of convex polyhedra approach is a powerful geometric

simplification, achieving very low vertex counts, lower than conventional convex hulls

or convex decomposition alone, and at lower distance errors.

Theoretical Accuracy

While experiments with robot geometries are representative for the types of geo-

metric shapes in our application to efficient robot task planning and show the effec-

tiveness of our approach, it is worth taking a step back and analyzing the general

properties of bounding sets of convex polyhedra.

A bounding convex decomposition can be seen as a compromise between the

number of convex polyhedra n, their number of vertices |V |, and the Hausdorff

distance ε to the original mesh. As with probably all mesh simplification, it is

hard to quantify theoretical bounds of what simplification is feasible. We cannot

72 CHAPTER 4. BOUNDING MESHES

(a) Original triangulation with 108,419 ver-
tices

(b) Convex hulls of all rigid bodies, 7 convex
bodies, 20,147 vertices

(c) Bounding set of convex polyhedra, con-
vex segments highlighted in color

(d) Bounding set of convex polyhedra, 64
convex bodies, 942 vertices

Figure 4.7: Bounding set of convex polyhedra of a Mitsubishi robot. Convex hull ap-
proximation of rigid bodies, the usual approach in robot motion planning, only simplifies
concave regions (b). A bounding set of convex polyhedra is a more accurate and simpler
generalization (c,d).

4.4. BOUNDING SETS OF CONVEX POLYHEDRA 73

Table 4.3: Bounding convex decomposition results of theMitsubishimodel under different
decomposition and bounding mesh approximation parameter settings. Parameters c and α
refer to V-HACD [96], n is a parameter of Algorithm 2.

Vertices per
convex body

Distance from orig-
inal to approxima-
tion [mm]

Distance from
approximation to
original [mm]

N
u
m
b
er

of
ve
rt
ic
es

n

N
u
m
b
er

o
f

co
n
ve
x
es

min mean max min mean max min mean max

Original triangulation (Figure 4.7a)
108419 n/a

Convex hulls of rigid bodies (Figure 4.7b)
20147 7 1216 2878.14 6119 0 5.35 53.61 0.000 0.001 0.009

Approximately convex segmentation, c = 10−2, α = 10−3

9274 30 43 309.13 966 0 2.41 34.93 0.003 1.33 12.38

Bounding sets of convexes thereof
6574 30 29 219.13 682 0 2.41 34.93 0.003 1.39 12.38
4608 30 23 153.60 469 0 2.42 34.93 0.003 1.43 12.38
2888 30 18 96.26 270 0 2.45 42.30 0.003 1.54 12.38
1700 30 14 56.66 147 0 2.53 42.01 0.003 1.77 12.38
620 30 10 20.66 42 0 3.07 42.30 0.020 3.57 17.79
427 30 10 14.23 28 0 3.92 42.30 0.020 6.46 42.39

Approximately convex segmentation, c = 10−4, α = 10−3

9085 64 8 141.95 805 0 2.47 34.97 0.001 1.37 3.50

Bounding sets of convexes thereof (Figure 4.7d highlighted in bold)
6729 64 8 105.14 594 0 2.47 34.97 0.001 1.41 3.50
3266 64 8 51.03 244 0 2.51 34.97 0.001 1.51 6.87
2030 64 8 31.71 134 0 2.59 34.97 0.001 1.69 7.58
1326 64 8 20.71 73 0 2.75 35.19 0.001 2.09 7.89
942 64 8 14.71 41 0 3.20 35.19 0.031 3.11 19.66
745 64 8 11.64 26 0 4.04 35.19 0.048 4.86 43.04

Approximately convex segmentation, c = 10−6, α = 10−3

10993 105 8 104.65 966 0 2.35 34.93 0.004 1.26 2.79

Bounding sets of convexes thereof
7937 105 8 75.59 682 0 2.35 34.93 0.003 1.29 2.79
5760 105 8 54.85 469 0 2.36 34.94 0.002 1.32 3.96
3824 105 8 36.41 270 0 2.38 34.94 0.001 1.38 5.05
2495 105 8 23.76 147 0 2.47 34.94 0.003 1.57 5.05
1764 105 8 16.80 79 0 2.63 34.94 0.002 1.94 8.14
1171 105 8 11.15 28 0 3.83 34.94 0.016 3.93 42.39

74 CHAPTER 4. BOUNDING MESHES

(a) A thin ring (b) Bounding convex decomposition with
n = 8 radial trapezoidal segments.

Figure 4.8: For very simple shapes, such as a thin ring, the optimal bounding convex
decomposition can be constructed. With increasing number of convex polyhedra n, the
approximation converges quadratically.

even guarantee that bounding convex decomposition will simplify any given input

mesh, as specified by Definition 3—in the worst case, input meshes such as a set

of disconnected tetrahedra or an already processed decomposition can no further

be simplified. Apart from empirical evaluation, only the most simple shapes allow

derivation of direct limits on the relation of |V |, n, and ε. An example for such

a shape is a ring with negligible width and unit radius. For symmetry reasons,

the best decomposition of a thin ring is a convex approximation of n equal radial

segments. For large n, trapezoidal prisms are obviously the best approximation, with

a total vertex count of 8n, and a Hausdorff distance of 1 − cos(π/2n) ≈ (π/2n)2.

Figure 4.8 shows an example of a bounding convex decomposition with n = 8. The

approximation to the concave inner surface of the ring can only be improved by

larger numbers of convex bodies.

In a later discussion of swept volumes of robot motion (Section 4.5), we will see

that the approximation distance decreases quadratically with the number of convex

polyhedra being used. While this gives some indication that smooth shapes can

be approximated by bounding convex decomposition, empiric evaluation shows that

the same applies to a wider range of shapes.

Bounding Sets of Convex Polyhedra for Collision Detection

In this section, we briefly digress to the more general question whether bounding

sets of convex polyhedra can guarantee a better worst-case computation time for

geometric queries than general meshes or convex hull approximations. Of course,

4.4. BOUNDING SETS OF CONVEX POLYHEDRA 75

this question is of great interest for a wide range of online motion planning, collision

avoidance, and collision checking applications. Many systems have to guarantee

collision avoidance within a real-time control cycle. While general mesh collision

checking builds on very fast broad-phase algorithms to prune candidate sets and

provide good average-case computation times, its worst-case computation time is

prohibitively high for applications with real-time requirements.

Proposition 2. Bounding sets of convex polyhedra allow collision detection (and

distance queries) within real-time bounds for practical scenarios.

In order to compare the distribution of computation times for collision checking

queries for general meshes, convex hull and sets of convex polyhedra approxima-

tions, we choose a robot path planning scenario. For path planning and collision

checking algorithms, we select the RRT-Connect2 [97] and Open Dynamics Engine

[98] implementations, which have been shown very efficient in practical scenarios

[24]. Rather than choosing simple algorithms that are possibly easy to speed up,

we conduct the experiment in a state of the art path planning system to see the

performance impact of the sets of convex polyhedra approximation orthogonal to

all broad-phase heuristics in a modern collision library. As a scenario, we choose a

pick-and-place task with a six-axes industrial manipulator and two narrow passages,

the same as analyzed by [99, p. 1]. Computation times were measured on a 2.8GHz

processor running a real-time Linux kernel. Durations of collision checks were col-

lected over 10 planned paths, all of which could be solved for all three geometries.

We purposely choose a modern RRT-Connect path planner for our collision query

benchmark because optimized planners may potentially focus on narrow passages

and make collision queries that are very different from random ones.

To discuss our hypothesis that an individual collision check on a set of convex

polyhedra has real-time capable worst-case behavior, we consider the distribution

of the duration of single checks, rather than the duration of the full path planning

procedure. Measurement results are shown in Figure 4.9, with a clear indication that

convex bodies allow faster collision checks, particularly in the worst case. In addition,

there is another significant observation that bounding sets of convex polyhedra allow

even better worst-case timing. An explanation for this may be their substantially

lower vertex count. All in all, results indicate that bounding sets of convex polyhedra

provide a more predictable performance, which is suitable for real-time requirements

in the worst case. In this benchmark, worst-case computation time is improved by

an order of magnitude.

An even stronger argument is the theoretical worst-case complexity of concave-

concave collision queries compared to pure convex-convex queries. While concave-

76 CHAPTER 4. BOUNDING MESHES

0

20

40

60

80

100

10−6 10−5 10−4 10−3 10−2

F
re
q
u
en

cy

Collision Checking Time [s]

1.4238 ms
maximum

0.0792 ms
mean

0.0095 ms
minimum

(a) Original, non-convex robot mesh, 9,665 vertices, 26 polyhedra

0

20

40

60

80

100

10−6 10−5 10−4 10−3 10−2

F
re
q
u
en

cy

Collision Checking Time [s]

0.2115 ms
maximum

0.0116 ms
mean

0.0042 ms
minimum

(b) Convex hull approximation, 2,649 vertices, 26 convex polyhedra

0

20

40

60

80

100

10−6 10−5 10−4 10−3 10−2

F
re
q
u
en

cy

Collision Checking Time [s]

0.1084 ms
maximum

0.0100 ms
mean

0.0028 ms
minimum

(c) Bounding set of convex polyhedra, 438 vertices, 41 convex polyhedra

Figure 4.9: Distribution of computation times for collision checking queries in a typical
path planning scenario with respect to robot geometry approximations, using a state-of-
the-art collision checking library. Queries with a normal, non-convex robot mesh are in
general expensive, and extremely costly in some cases (a) (note the logarithmic time scale).
Bounding sets of convex polyhedra allow faster collision checks in the average case, and
provide predictable efficiency even in the worst case (c).

4.5. BOUNDING SWEPT VOLUMES 77

concave algorithms can only rely on exhaustive checking of triangle pairs in the

worst case, which scales with Ω(nm) for two shapes of n and m vertices, convex-

convex queries are answered by the Gilbert/Johnson/Keerthi (GJK) algorithm [100]

in O(n+m). Under mild assumptions about the number of convex polyhedra in the

scene, collision queries on sets of convex polyhedra are efficient in the worst case. As

a corollary, distance queries are likewise provided by the GJK algorithm and can also

be solved efficiently for sets of convex polyhedra. Further applications of efficient

distance queries include various online motion planning and control schemes, such

as repulsive force control for haptic devices or potential field techniques for robot

collision avoidance.

4.5 Bounding Swept Volumes

After our discussion of the general properties of bounding meshes and bounding sets

of convex polyhedra, we return to the original goal to evaluate bounded geomet-

ric predicates (Definition 1), which are required by the KABouM integrated task

and motion planner. In the previous sections, single objects were decomposed into

bounding sets of convexes, which allows efficient evaluation of two of the geomet-

ric predicates: whether two objects m0 and m1 collide, that is m0 ∩m1 ̸= ∅, and
whether one object is included in another, m0 ⊆ m1. In the following, we generalize

our concept of single-sided approximation to the remaining two bounded geomet-

ric predicates, the collision queries between a swept volume of a robot motion and

an object, and between two swept volumes of robot motions. Both predicates are

defined as ε-precise bounded collision predicates, they must report all collisions ex-

actly, and all non-collisions that are further apart than ε (see truth table on page

44).

As proposed in our previous work [8], the swept volume of a chain of revolute

joints can efficiently be approximated by a bounding set of convex polyhedra (Fig-

ure 4.10), provided that a bounded convex decomposition of the robot is available.

Proposition 3. Given is a serial manipulator of k revolute axes and its geometric

boundaries as a bounding convex decomposition of m convexes with n vertices each.

Then, the swept volume of a length |Q| linear joint space motion can ε-precisely be

approximated by a bounding convex decomposition of O (km |Q| /
√
ε) convexes of 2n

vertices each.

Proof by construction. It suffices to construct the swept volume of an individual

convex body of n vertices, as the final result can be obtained from the union of the

78 CHAPTER 4. BOUNDING MESHES

(a) Swept volume of serial revolute joints,
approximated by few linear sweeps.

(b) Bounding set of convex polyhedra ap-
proximating a swept volume.

Figure 4.10: The swept volume of a robot motion can be approximated by a small bounding
set of convex polyhedra.

resulting m swept volumes. Let Q denote the joint space path, and rmax the maxi-

mum distance of a vertex to the first axis of the robot, summing up all link lengths

and the distance to the furthest vertex. The strategy is to find an adequately large

sampling distance ∆q along the path that fulfills the ε-distance constraint, which

allows us to show quadratic convergence with respect to the number of samples.

For a single revolute joint with an endpoint at distance r, a rotation by an angle

q < π will let the endpoint deviate from the chord (straight line from start to end)

by ε = r (1− cos (q/2)) [101]. For general serial kinematics of multiple revolute

joints, Baginski [102] describes an upper bound for the deviation of the path of a

point from the chord of that path:

ε ≤ rmax


1− cos


i
|qi|


2


(4.19)

Note that this bound, contrary to other solutions like [103], does not assume any

limit of the screw motion in each path segment, but only depends on more general

properties of serial revolute kinematics. In addition to the trivial case k = 1, Bagin-

ski’s bound is tight when all link lengths but the last one tend towards zero and all

joints rotate in the same direction around the same axis.

4.5. BOUNDING SWEPT VOLUMES 79

While Eq. 4.19 can readily be used to solve for ∆q, we would like to show its

quadratic convergence with respect to the number of samples and obtain Proposi-

tion 3. For this, we apply the second order series expansion of the cosine, cos(q) ≥
1−


q2

2

, and obtain the quadratic bound

ε ≤ rmax


i
|∆qi|

2 
8. (4.20)

As a result, one may choose the angular discretization step

∆q :=

8ε/rmax (4.21)

to generate swept volumes at a desired precision ε, and at a quadratic convergence

rate.

Similar to Xavier et al. [101], we form convex hulls of consecutive poses of the

convex bodies, and add an implicit offset ε as Schulman et al. [103]. Let q(i) be

a discretization of the path Q at steps ∆q, and let Body be a bounding convex

decomposition of the robot geometry comprising m convex sets of vertices. For

each sweeping convex polyhedron, we compute its convex hull at subsequent path

segments q(i) and q(i+ 1), applying the forward kinematics function FK.

SV(Body, Q) =

m


i

conv (FK(q(i+ 1))Bodym ∪ FK(q(i)) Bodym) (4.22)

It directly follows that O(k |Q| /
√
ε) convex polyhedra, of at most 2n vertices each,

are sufficient to approximate the swept volume of one convex body at precision ε,

where |Q| denotes the length of Q in joint space. Finally, a bounding set of convexes

is obtained by an offset surface at distance ε; rather than computing this offset

explicitly, the offset is implicitly taken into account for all future distance queries,

as proposed by [103].

Intuitively, Proposition 3 implies that doubling the number of such linear path

segments will quadruple the precision of the approximation, but only double the

complexity of the swept volume. Figure 4.11 illustrates how a bounding swept vol-

ume is generated for a single path segment. Assuming that the path segment is not

longer than ∆q in joint space, the vertices of a convex body cannot deviate further

than ε from the chord of their path (shown as a dotted line). For a single vertex,

this region may be regarded as a capsule in 3D space (shown in gray). The swept

volume is constructed with an ε-offset of the convex hull of two subsequently sam-

pled positions (shown in blue). In the worst case, all 2n sampled vertices will form

80 CHAPTER 4. BOUNDING MESHES

path segment

deviation bound

convex body

swept volume of convex body

chain of revolute
joints

Figure 4.11: The swept volume of a path can be sampled by unions of convex hulls, and
the deviation converges quadratically with the number of samples.

the convex hull. Rather than explicitly computing offset surfaces, whose rounded

corners cannot be represented by small numbers of vertices, only convex hulls are

stored, and the offset distance is implicitly subtracted in all future distance queries.

Note that Eq. 4.19 can be made slightly stronger by calculating rmax and the subset

sums of q for each link individually. In an implementation, this results in fewer

samples and simpler swept volumes, especially for the first few links.

In theory, this approach to compute swept volumes is not limited to outer bound-

ary representations. Negating the offset direction, one can generate inner swept

volumes, which would help evaluate whether a robot motion is completely included

within are certain geometric region. However, this would require an inner convex

decomposition of all shapes in the first place, and it is not clear in which task and

motion planning domain this type of predicate would be relevant. To summarize,

we can generate bounding swept volumes of revolute kinematics with rather small

sets of convex polyhedra, provided that the robot geometry is already available as

a bounding set of convex polyhedra (Figure 4.10b). This geometric representation

then allows very efficient queries to the bounded geometric predicates from Defini-

tion 1. For static scenes, swept volume generation and continuous collision detection

is not necessary. In robot task planning, however, movable obstacles, multiple robots

and more general behavior go well beyond the concept of static scenes, and swept

volumes are one way to formulate very generic predicates to solve these types of

scenarios.

4.5. BOUNDING SWEPT VOLUMES 81

Conclusion

In this chapter, we have developed a set of bounded geometric predicates (Defini-

tion 1). In contrast to regular collision and inclusion queries, these predicates allow

single-sided tolerances. After discussing the state of the art in mesh approximation,

we devised the new bounding mesh algorithm to implement these predicates. In our

experiments, we can compress several robot geometries by a factor of 10–20, down

to 4,000–12,000 vertices, at a precision of 1%. In a second step, we combined the

bounding mesh algorithm with an algorithm for convex decomposition to represent

the geometry as bounding sets of convex polyhedra. This approximation permits

an efficient evaluation of all geometric predicates and also applies to more gen-

eral collision detection and distance computation problems. To complete the set of

bounded geometric predicates, we presented a method to generate swept volumes for

serial revolute kinematics. In context of the KABouM planning system, geometric

predicates allow the symbolic planner to evaluate the geometric state. In the next

chapter, we will consider the opposite problem and derive an approach to generate

geometric states that fulfill symbolic properties, before we can finally evaluate the

integrated planner.

Chapter 5

Sampling with Geometric

Constraints

83

84 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

As mentioned earlier, there is wide consensus among researchers that robot task

and motion planning requires hybrid planning in both symbolic and geometric spaces

with systematic mapping between discrete symbols and continuous state vectors

[4, 27, 66]. In the previous chapter, a set of geometric predicates was proposed to

perform queries from the task planner to the geometric state. A geometric predicate

abstracts from the geometric state and returns a discrete value, most commonly a

truth value. Besides this geometric–symbolic mapping, it is equally important for a

hybrid planner to map from abstract symbols to geometric states by instantiating

new geometric states or refining symbols with a geometric meaning. Without such

instantiation of geometric states and sampling in the geometric space, the search

could never be complete, and would fail at solving the simplest scenarios. A common

example to generate a new geometric state would be to sample a robot configuration

at random, which is a basic step in many path planning algorithms. Sampling

geometric states is an inherently harder problem because symbolic conditions must

be fulfilled that, in general, form a lower-dimensional, non-trivial manifold of the

full geometric space. Therefore, the task and motion planning problem cannot be

solved by random sampling of robot configurations and object positions. In almost

all scenarios, geometric preconditions of actions form lower-dimensional manifolds,

and random sampling has zero probability of generating a geometric state where

these actions are applicable. As an example, the subspace of robot configurations

where the robot’s gripper holds an object cannot be covered by simple random

sampling. In this case, a constraint sampling method is required that covers the

subspace. In contrast, a collision-free robot configuration can generally be sampled,

because the probability for a collision-free pose is greater than zero. This is a simpler

case and can be handled by rejection sampling methods.

In general, there exist three sampling strategies relevant to robot task and mo-

tion planning [104]. In the simplest case, the constraint manifold has a non-zero

volume in the configuration space, and rejection sampling can cover this manifold

(Figure 5.1a). This strategy is chosen by most sampling-based path planning algo-

rithms. If the constraint manifold has a lower dimensionality but can be covered by

a closed-form algebraic mapping from a Euclidean space, samples can be computed

from random points drawn from that Euclidean space (Figure 5.1b). However, only

simple manifolds have such simple shape, and even then the mapping function needs

to be implemented by hand, for each type of shape. Still, closed-form sampling is

often sufficient for grasp planning. Constraint projection sampling is the most gen-

eral strategy, as it only expects a cost function suitable for iterative projection

(Figure 5.1c).

5.1. RELATED WORK 85

(a) Rejection sampling can
only cover manifolds that
have a non-zero volume in
the configuration space.

x
y

(b) Closed-form sample
computation is feasible
for simple constraints,
but requires case-by-case
implementation.

(c) Constraint projection
sampling can cover lower-
dimensional manifolds when
a suitable cost function is
provided.

Figure 5.1: Sampling strategies to cover constraint manifolds (adapted from [104, p. 7]).

5.1 Related Work

Task and motion planners follow different approaches to refine symbolic states with

geometric sampling. The BHPN planner by Kaelbling and Lozano-Pérez [27] uses

the concept of generator functions to make choices in the geometric space. Generator

functions are very different from our geometric sampling functions, as they apply

action-specific heuristics depending on both the initial state and the goal state,

while our geometric sampling is more generically defined by constraints. In addition,

BHPN performs a regression from the goal state rather than a progression, which

naturally requires a different approach to geometric sampling. Apart from direct

applications to hybrid planning, constraint sampling is covered by related works in

manipulation planning and task-level robot programming.

Manipulation Planning

Sampling in geometric subspaces is a recurring problem in the context of robot

manipulation planning. Already in the early days of the Handey robot [105], it was

realized that manipulation may generally require a sequence of transits and transfers

with re-grasping. More generally speaking, transitions between transit and transfer

motions form a lower-dimensional manifold that requires more specific sampling.

Similar to our definition of the robot task planning problem, even the manipulation

86 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

planning problem cannot be solved by hierarchical calls to a path planner, but

requires a larger, combined search space.

A common formulation of the manipulation planning problem was proposed by

Alami, Siméon and Laumond in 1989 [106], who suggest a random sampling approach

in a combined search space of robot and object configurations [106], [57, p. 332ff.].

This composite search space can then be explored by probabilistic roadmaps, as

described by Siméon et al. [107]. In particular, they discuss the problem of finding

lower-dimensional transitions between manipulation actions, which are sparse in

the search space. For this, they explicitly generate samples in the intersection of

the transit and transfer subspaces, which correspond to the space of stable object

placements and the space of rigid robot–object connections, respectively.

Barry et al. [108, 54] generalize manipulation planning to more diverse action

planning with pushing and sliding actions, and usage of tools, also referred to as

multi-modal motion planning. This approach can be seen as a sampling-based so-

lution closely related to task and motion planning. For geometric sampling, it uses

projection functions to map random samples to lower-dimensional manifolds. Hauser

and Ng-Thow-Hing [34] perform a hybrid search in the mode graph, following modes

and lower-dimensional transitions between modes. Here, a mode represents a con-

tinuous sub-manifold of the configuration space, such as a moving robot that keeps

a single contact state. Hauser and Ng-Thow-Hing demonstrate their Random-MMP

planner to generate a trajectory for a bipedal humanoid to walk and push an object

on a table. While these two multi-modal motion planners take a task and mo-

tion planning approach different from that of our KABouM planner, their proposed

techniques for geometric sampling can be applied more generally.

Of course, the field of robot manipulation covers more general questions of navi-

gation among movable obstacles, which can be seen as a pick-and-place task without

specified goal locations, for which specific algorithms exist [109, 110], and is also re-

lated to grasp planning, dynamics, stability, and friction [111, 57]. However, for our

definition of the task and motion planning problem, we limit ourselves to pre-defined

manipulation actions with constraint relations between robot tools and objects.

Task-Level Programming

Besides manipulation planning, our approach to sample geometric states in con-

straint manifolds is closely related to task-level programming [112, 113, 114, 115].

In task-level programming, constraint relations between feature coordinate systems

of kinematics and objects can be specified, and are automatically solved for subse-

quent motion planning. The field of task-level programming dates back to Ambler

5.1. RELATED WORK 87

sample q in configuration space

sample qA projected to
constraint A

subspace of constraint A

subspace of constraint B

subspace of the intersection of
constraints A and B

Figure 5.2: The set of conditions of a symbolic action may contain geometric constraints,
which, in general, form manifolds lower in dimensionality than the full configuration space.
Sampling a geometric state that fulfills one or more constraints therefore requires an iterative
solution [54, p. 64f.].

and Popplestone’s spatial relationship solver [116] in 1975. They apply symbolic

methods to solve poses between objects that fulfill a system of constraints, and were

already motivated by the prospect of more intuitive robot programming. In 1984,

Lozano-Pérez and Brooks [114] present the Automatic Task Level Assembly Syn-

thesizer (ATLAS) system, which solves assembly constraints and generates robot

trajectories, and achieves a robot programming formulation on the task level, inde-

pendent from specific kinematics and geometry. Rutgeerts [112] and de Schutter et

al. [113] develop the above ideas further and describe the Instantaneous Task Spec-

ification using Constraints (iTaSC) framework, which generalizes constraint-based

robot programming to sensor-based tasks. In the view of geometric sampling, iTaSC

contributes to the automatic resolution of spatial and kinematic constraints. While

iTaSC is designed for robot control with online sensing, its constraint formulation

in terms of feature coordinates is similar to our geometric constraints, in contrast

to formulations that can only directly refer to the operational space of a kinematic.

In our own previous work, we solve geometric constraints to allow task-level

programming in terms of CAD semantics [14]. The following problem formulation,

cost functions, and algorithm extend and elaborate our earlier work, and apply it to

the problem of sampling in constraint spaces.

88 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

(a) Rigid transfer (b) Push with left
finger

(c) Push with right
finger

(d) Frontal push

Figure 5.3: The geometric constraint formulation allows different types of robot–object
relations to be defined from primitive constraints, similar to mating operations in computer-
aided design software. All the above grasp families have a remaining degree-of-freedom
around the rotational axis of the object, in addition to a redundant degree-of-freedom of the
LBR4 robot. While rigid transfer motions may use all robot joints, push motions follow a
one-dimensional Cartesian subspace along the pushing direction [117].

5.2 Geometric Constraint Formulation

A central motivation for our approach to robot task and motion planning is to

formulate the problem on the task level, and follow a generic solution to generate

intelligent robot actions. For this reason, we define relations between kinematic

structures and objects in terms of geometric constraints, which should be fulfilled

by sampling certain types of configurations automatically, rather than by provid-

ing explicit, manual sampling methods for each type of configuration. While some

grasping poses can be defined by a rigid transformation between robot and object,

the geometric constraint formulation allows more general types of relations. As an

example, Figure 5.3 shows a number of example relations between a parallel gripper

and a cylindrical object. When these relations are expressed in terms of geomet-

ric constraints, a constraint sampling method can take advantage of the rotational

degree of freedom of the object and cover the subspace of grasping configurations,

without the need for any domain-specific or manually defined parameters.

In our formulation, a geometric relation is defined as a conjunction of geomet-

ric constraints—coincidence, parallelism, distance, or angle—between the primitive

shapes points, lines, and planes, which may refer to the tool frame of a kinematic

or to a coordinate frame of an object. A list of the types of constraints that are

currently covered by our implementation is shown in Table 5.1. This formulation

extends our previous work on constraint-based robot programming [14]. While the

5.2. GEOMETRIC CONSTRAINT FORMULATION 89

presented algorithm and cost functions are mostly an adaptation of our previous

work to the problem of sampling in constraint spaces, we add a deeper discussion

of completeness and distribution properties, which are of interest to the sampling

problem.

Following the notation of the task and motion planning problem definition (Sec-

tion 3.1), a kinematic structure R ∈ R is characterized by a forward kinematic

function FK, which maps from an n-dimensional configuration space to the pose of

its tool, Rn →→ SE(3). To facilitate the formulation of geometric constraints, the tool

frame of a kinematic further possesses a set of primitive shapes P, which contains

points, lines, and planes. These features are not necessarily parts of the geometric

body, but can more generally refer to tool center points, axes of rotation, or other

virtual entities. Similar to kinematic structures, an object likewise possesses a set

of primitive shapes that refer to the coordinate frame of that object. This con-

straint formulation with shape features is more powerful than direct references to

the operational space of a kinematic [112, 113]. At the same time, it allows a pure

task-level description for some types of geometric relations that would otherwise

require manually defined parameters.

5.2.1 Constrained Sampling Problem

Before we attempt to solve geometric constraints in the above formulation, we first

define the general properties of a constraint sampling algorithm. Clearly, a con-

straint sampling algorithm should only produce correct samples that fulfill the given

constraints. Using a source of randomness, the algorithm is further required to cover

the constraint manifold.

Definition 4 (Constraint Sampling Algorithm). Given a constraint manifold C in

a configuration space Q and a cost function FC : Q →→ Rc whose kernel is C, i.e.

FC(q) = 0⇔ q ∈ C, a constraint sampling algorithm is defined as follows:

1. (Correctness) It outputs a constraint sample q ∈ C.

2. (Coverage) For any given ε-neighborhood within C with ε > 0, subsequent

sampling will eventually generate a sample within that neighborhood [118].

First, we elaborate how such constraints can be defined in terms of geometric

relations between robots and objects. This formulation of specific cost functions

directly leads to an iterative strategy. At the end of the chapter, we revisit the cov-

erage criterion, which has been proven for a wide range of sample–project strategies

by Berenson and Srinivasa [118].

90 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

Table 5.1: Definition of geometric constraints and their cost function. p denotes a point
on a shape, d the direction vector along a line, and n the normal vector of a plane. This
list extends our previous definition published in [14].

Constraint
type

First primi-
tive shape

Second primi-
tive shape

Cost function

Coincident Point p1 Point p2 p1 − p2

Coincident Point p1 Line (p2,d2) null(d2)
T (p1 − p2)

Coincident Point p1 Plane (p2,n2) nT
2 (p1 − p2)

Coincident Line (p1,d1) Line (p2,d2) null(d1)
T

(p1 − p2) d2


Coincident Plane (p1,n1) Plane (p2,n2) nT

2


(p1 − p2) null(n1)


Parallel Line (p1,d1) Line (p2,d2) null(d1)

T d2

Parallel Plane (p1,n1) Plane (p2,n2) null(n1)
Tn2

Parallel Line (p1,d1) Plane (p2,n2) nT
2 d1

Perpendicular Plane (p1,n1) Plane (p2,n2) nT
1 n2

Distance d Point p1 Point p2 ∥p1 − p2∥ − d
Distance d Point p1 Line (p2,d2)

null(d2)
T (p1 − p2)

− d
Distance d Point p1 Plane (p2,n2)

nT
2 (p1 − p2)

− d

The constrained sampling problem is to obtain a sample qC that fulfills a set of

constraints C, which relates one or more primitive shapes of both kinematic struc-

tures and objects [14]. A constraint C ∈ C may be described by a cost function

fC : SE(3)×SE(3) →→ Rc that equals the zero vector (fC = 0) if and only if the con-

straint is fulfilled. With these cost functions, the cost of a kinematic configuration,

which may be subject to multiple constraints, simplifies to a single vector-valued

function F : Rn →→ Rc (Eq. 5.1).

argmin
q


R∈R


C∈C

f2
C (FKR(q),x) = argmin

q
|F (q)|2 (5.1)

Here, x ∈ SE(3) refers to an object pose that is related to the kinematic through a

constraint. A cost function fC depends on the parameters of the primitive shapes

P (Table 5.1), which is a linear function for most types of constraints. However, the

parameters of the primitive shapes depend on an object pose x, or on a robot tool

frame FKR(q), which ultimately depends on the robot’s configuration q. The set of

cost functions for all constraints C ∈ C is then written as a function F (q) suitable

for iterative sum-of-squares minimization [14].

Similar to earlier approaches to constraint sampling [118, 54], we may sample a

random, unconstrained configuration q ∈ Rn and follow an iterative minimization

of its cost in order to project it on the constraint space. Since the cost function is

5.2. GEOMETRIC CONSTRAINT FORMULATION 91

input : Set of geometric constraints C
output: Random sample q that fulfills constraints C
q ← RandomSample() ∈ Rn;
cost ←∞;
while norm(cost) > epsilon do

cost ← F (q) (Table 5.1);
J ← CentralDifferences(F , q);
q ← q−PseudoInverse(J) cost;

end
return q;

Algorithm 3: Constraint sampling by iterative projection

rather smooth and its minimum is clearly defined, it can be solved by a simple Gauss-

Newton method [14]. As outlined in Algorithm 3, we start with an unconstrained

configuration q that is randomly sampled in the robot’s configuration space. In each

iteration, cost F (q) and Jacobian matrix J i,j = δFi/δqj are computed; the current

implementation approximates the derivatives by central differences. The Gauss-

Newton step performs a linear update on the configuration to minimize costs, using

a pseudo-inverse to handle rank-deficient Jacobian matrices. When the cost function

converges to zero, we finally obtain a constraint sample configuration q.

With this constraint sampling algorithm at hand, two issues need to be discussed.

First, we need to design an appropriate set of cost functions. Second, it is not obvious

whether the above algorithm can cover the constraint space completely.

5.2.2 Design of Geometric Cost Functions

The choice of cost functions has a great impact on the efficiency and stability of

the projection algorithm. In order to allow the Jacobian J i,j = δFi/δqj and its full

nullspace to be computed, cost functions should be vector-valued with codomain

Rc, where c reflects the number of constrained degrees-of-freedom. Ideally, the com-

ponents of the cost function should be independent and follow a common distance

metric. Of course, there is no obvious metric to compare distances in translation

and rotation, so these components should be weighted such that they contribute

equally in the scenarios of interest. Table 5.1 lists cost functions that fulfill these

design properties and implement the most relevant types of geometric constraints,

including all types of constraints required in the task and motion planning scenarios

that will be evaluated in Chapter 6.

To give an example for poor cost function design, consider the cost function

Coincident(Point, Line) to be alternatively defined in terms of the distance cost

92 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

function Distance(Point, Line) with distance zero. However, this alternative function

would not reflect the correct number of constrained degrees-of-freedom, which is two

in this case. As an effect, the Jacobian matrix would no longer allow us to compute

the full nullspace of this constraint.

5.2.3 Completeness of Constrained Sampling

For task and motion planning, it is crucial to ensure that none of the sampling

strategies affect the completeness of the search. If only one component of the task

planning system failed to cover the complete search space of a given domain, the

entire planner would be incomplete and no longer able to solve all scenarios that

can be solved, irrespective whether these scenarios are of practical relevance.

For our sampling component to be complete with respect to the search space,

it must cover a given constraint manifold. In this context, coverage means that

every fully-dimensional open sphere contained in the constraint manifold will be

covered by a random sample with a probability larger than zero [118]. The first

rigorous proof for the coverage of a sampling approach that projects on constraint

manifolds was presented by Berenson and Srinivasa in 2010 [118], as part of proving

the probabilistic completeness of the Constrained Bidirectional Rapidly-exploring

Random Tree (CBiRRT) path planner. Their proof shows that sampling–projection

procedures, including our Algorithm 3, cover a given lower-dimensional constraint

manifold under several conditions. For their proof to apply to our argumentation,

two of its assumptions must be fulfilled [118, p. 3].

First, the projection function, which is the iterative step in Algorithm 3, must

update q if and only if q ̸∈ C. On the one hand, this requires cost functions to

have a non-zero derivative outside the constraint space. For example, the point–line

distance has a local maximum for points on that line, so its derivative implemen-

tation should specifically handle this special case not to converge locally. On the

other hand, Algorithm 3 obviously does not step further if a sample q ∈ C has

been found. Second, if a configuration q is infinitesimally close to the constraint

manifold, it must be projected to the closest point on the manifold. Since the cost is

infinitesimal in this case, one can verify that the iterative step is exact and projects

to the closest constraint sample.

Even though Berenson and Srinivasa can show the coverage for a wide range of

sample–project methods, they also discuss conditions under which these methods

fail. Most relevant to us, hierarchical constraints with multiple priorities, which

are effective to whole-body motion control [119], cannot be covered by projection

sampling. As an example, lower-priority pose optimization should not be integrated

5.2. GEOMETRIC CONSTRAINT FORMULATION 93

in the constraint sampling routine. Such lower-priority constraints would attract

the projection routine to local minima and render the constraint sampling approach

incomplete [118, p. 7].

5.2.4 Evaluation of the Sampling Algorithm

Coverage does not imply that samples are uniformly distributed on the constraint

manifold. In order to evaluate our approach to sampling with geometric constraints,

we measure the distribution of samples in two relevant scenarios, depicted in Fig-

ure 5.4.

In the first scenario, a six-axes manipulator with a parallel gripper is supposed to

place an object on a planar table. For this, the sampling algorithm should generate

random robot configurations where the tool is at a defined distance to the table, and

a certain plane of the object is parallel to the table. To evaluate this scenario, we

measure the frequency of samples with respect to their y-coordinate on the table.

The distribution, shown in Figure 5.4a, covers the complete range of possible place-

ments in this axis. Although it is clearly denser towards the center in operational

coordinates, this may also be explained by the workspace of the manipulator, which

offers more configuration-space solutions towards its center.

The second scenario, shown in Figure 5.4b, shows an example where constraint

sampling is strongly biased. In this scenario, the same manipulator is supposed to

grasp a cylinder at its rim, with one finger inside, one outside. Note that this grasp

can be defined by a coincidence, a parallel, and a distance constraint, which all refer

to both the tool and the object, but cannot be defined in terms of operational space

constraints alone. The constraint space has the form SO(2) and can be parameter-

ized by a grasping angle. The distribution of samples with respect to the grasping

angle has a sharp peak and two broader bumps, but it does cover the whole range

]−π, π]. Clearly, a large region of unconstrained samples in the configuration space

is attracted to the shortest-distance grasp at a certain angle, which causes a peak

and a bump around it. The second bump arises from swapping the fingers, which

offers fewer solutions. This second example shows that coverage does not imply a

uniform distribution of samples even in simple, practical cases.

Conclusion

In sum, we propose a formulation for geometric constraints that define relations

between robot tool spaces and objects, and provide a projection sampling routine

to cover these constraint spaces in robot task and motion planning domains. With

this generic sampling method, we can map from abstract, symbolic preconditions of

94 CHAPTER 5. SAMPLING WITH GEOMETRIC CONSTRAINTS

Constraints:

Parallel(Plane toolZ , Plane table) ∧
Distance(Point toolcenter, Plane table) =
height(object)

Constraints:

Parallel(Line toolZ , Line cylinderaxis) ∧
Distance(Point toolcenter, Line cylinderaxis)
= radius(cylinder) ∧
Coincident(Line toolX , Plane cylindertop)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

-1.5 -1 -0.5 0 0.5 1S
am

p
li
n
g
p
ro
b
ab

il
it
y

Grasping location y-axis [m]

(a) Constraint sample poses for placing an
object on a planar table. The distribution
is slightly biased toward the center of the
workspace.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

-2 -1 0 1 2 3 4S
am

p
li
n
g
p
ro
b
ab

il
it
y

Grasping angle [rad]

(b) Constraint sample poses for grasping a
cylinder at its rim from a known location.
While all grasping angles are sampled, most
random poses are attracted to a single grasp-
ing location close to the workspace center.

Figure 5.4: Distribution of constraint sampling poses. Even though the constraint space
is completely covered, the distribution may be strongly biased, depending on the workspace
of the kinematic.

5.2. GEOMETRIC CONSTRAINT FORMULATION 95

robot actions to feasible geometric states. In particular, the method is suitable to

sample in manifolds lower in dimensionality than the full configuration space, where

rejection sampling would fail. Compared to related projection sampling methods,

the formulation is not limited to the robot tool space, and therefore more expressive

with respect to the geometric constraints that can be defined.

Chapter 6

Implementation and Evaluation

97

98 CHAPTER 6. IMPLEMENTATION AND EVALUATION

The topics discussed in the previous chapters—domain description, automated

planning, single-sided geometric predicates, and constrained sampling—form the in-

dividual components of our Knowledge-level Action and Bounding Geometry Motion

planner (KABouM). In the following, we discuss the implementation of these com-

ponents and their integration to a software system. Of course, a realistic evaluation

can only be conducted by solving different problems on the full system. For this, we

define and evaluate different scenarios that cover several robot kinematics, geome-

tries, and symbolic domains. To show the effectiveness of our approach, we further

demonstrate individual problem instances on real robot systems.

6.1 System Implementation

An integrated task and motion planner is necessarily a large software system of sev-

eral components. Besides the symbolic planner, which can be domain-independent,

a number of robotics-specific software components need to interact to solve a given

problem. While integration of these components is an important design task in

such a system, implementation may rely on existing software libraries. In the recent

years, powerful robotics software frameworks such as the Robot Operating System

[120] have been developed, and open-source robotics software has made substantial

progress in general. Our KABouM planner relies heavily on existing software, how-

ever, we mostly cherry-pick functions from more lightweight libraries rather than

large-scale frameworks. For robotics-specific functions, we reuse many functions of

the Robotics Library by Rickert [24]. For collision, inclusion, and distance com-

putations, we use several libraries for comparison [121, 122, 98, 123]. Figure 6.1

shows an overview of the software components in our integrated task and motion

planner; components are organized from high-level to low-level in the vertical axis,

and the horizontal axis shows the sequence from pre-processing of geometric models

to physical execution on a robot system. In the following, we discuss the individual

components, in particular the interaction of symbolic and geometric planning.

6.1.1 Geometric Pre-processing

The use of bounding meshes and bounding convex decomposition to approximate

geometry is a novel and important feature in the KABouM system. These geometric

simplification methods do not require direct integration with the planner itself, but

rather run as pre-processing steps before actual planning. In the current version of

the implementation, each rigid body of a robot and each object is decomposed with

V-HACD [96], using the parameter setting c = 10−4, α = 10−3 (Section 4.4.1). On

6.1. SYSTEM IMPLEMENTATION 99

Geometric

Predicate

Evaluation

Sampling with

Geometric

Constraints

Bounding Mesh

Simplification

Bounding Convex

Decomposition

Plan

Execution

SensingDomain

Definition

Symbolic

Planner

Symbolic–Geometric

Mapping

Collision

Checking
Kinematics

Trajectory

Generation

Robot

Control

Planning time Run-timePre-processing

Figure 6.1: Software component overview of the Knowledge-level Action and Bounding
Geometry Motion planner (KABouM). The vertical axis loosely reflects software dependen-
cies, with function calls directed from top to bottom. The horizontal axis indicates that
pre-processing, planning, and execution are mostly independent and follow a sequence from
left to right.

the convex segmentation, the bounding mesh algorithm is run with the cost function

Eplanes with adaption of the constant term (defined in Section 4.3.2) and maximum

distance ε < 0.02m. For the scenarios studied in this chapter, V-HACD requires

several minutes of computation time, while the bounding mesh algorithm requires

only 30–60 seconds.

6.1.2 Components for Planning and Symbolic–Geometric Mapping

In integrated task and motion planning, the design of a mapping mechanism between

symbolic and geometric states is of great importance, as it directly affects the com-

pleteness of the search, the expressiveness of the problems that can be formulated,

and the performance of the planner to solve complex problems. The simplest way to

coordinate symbolic and geometric searches would be to discretize geometry before

planning and introduce a symbol for every geometric state. While this method re-

quires no specific interfaces to the symbolic planner, any fixed discretization cannot

cover the geometric space and is therefore incomplete, not to mention its extreme

branching factor and inefficiency.

Our solution to map between symbolic and geometric states is to define a lexi-

cographical order on geometric states. As a more general alternative, total orders

for all components of the geometric state space may be defined. A total order is

100 CHAPTER 6. IMPLEMENTATION AND EVALUATION

sufficient to define a bidirectional map that preserves uniqueness in both directions,

between identifiers to geometric states on the symbolic side and full geometric state

vectors on the geometric side. Formally, we construct a bidirectional mapping be-

tween the geometric state space X and a simpler set of geometric identifiers Y . The

geometric state space X is usually a product space of robot and object configura-

tions, with several components in R and SO(3), but our mapping also allows more

general data structures. Depending on the symbolic planner in use, identifiers may

be implemented as natural numbers, Y ⊂ N, as in our case with the PKS planner,

or as additional symbols, Y ⊂ Σ.

Definition 5 (Symbolic–Geometric Map). We define a bidirectional mapping func-

tion f : X →→ Y from the symbolic state space X to a set of identifiers Y using

a lexicographical order 4 (or, other total order) on X. For an existing geometric

state x ∈ X, where there exists another state x′ with x 4 x′ ∧ x′ 4 x, the same

identifier f(x) = f(x′) is returned. Otherwise, a new identifier y is constructed, for

instance y := |Y |+1. The inverse f−1 can be implemented efficiently using a storage

container with keys Y .

The bidirectional mapping then has the following properties.

1. (Uniqueness) Let x = x′ denote equality of geometric states x 4 x′ ∧ x′ 4 x.

Then, x = x′ ⇐⇒ f(x) = f(x′).

2. (Efficiency) f can be evaluated in time O(log(|Y |)) using 4-sorted trees or

other map structures, f−1 can be evaluated in constant time using a linear

array.

Implementation of the Symbolic–Geometric Map

As described in Section 3.3, our search scheme is a forward search controlled by the

Planning with Knowledge and Sensing (PKS) planner [70]. The symbolic planner

calls external procedures and thereby interacts with geometric planning. In partic-

ular, the symbolic planner can evaluate geometric predicates, which take symbols

and identifiers for geometric states (or, components of the geometric state) as argu-

ments, and return a truth value. For the symbolic planner, a geometric predicate

is a function of type Σ × Σ × . . . × Y →→ B. Symbolic–geometric mapping then

translates geometric identifiers to states by applying the inverse mapping f−1 and

calls robotics-specific functions. These functions evaluate whether an action is geo-

metrically feasible, modify the current geometric state, and return true on success.

After a successful evaluation, the symbolic planner calls an external procedure of

type ∅ →→ Y that returns the identifier of the updated geometric state, generated by

6.1. SYSTEM IMPLEMENTATION 101

f , and stores that geometric identifier in its symbolic state. Our implementation is

motivated by Dornhege’s, who refers to the above procedures as condition checking

and effect application [5, p. 32].

Note that our approach to symbolic–geometric mapping makes very few assump-

tions about the symbolic planner, and can therefore interact with most general-

purpose planners. Furthermore, it is applicable to all domain-specific state spaces

that allow total ordering. When implementing a total order on floating-point val-

ues, near equality of imprecise floating-point values must properly be detected and

handled to ensure uniqueness.

Mapping Parts of the Geometric State

As a simple variant of this mapping, components of the geometric state space can be

mapped individually. With component-wise mapping, we can select exactly those

parts of the geometric state on which a geometric predicate depends. Parts of

the geometric state that are unrelated to a geometric precondition can be hidden

from the symbolic planner. The results of this approach are similar to Dornhege’s

partial state caching for condition checking [5, p. 103]. As an example, consider a

geometric predicate isReachable(robotSymbol, objectSymbol, objectPositionIdentifier),

which returns a truth value whether a robot kinematic robotSymbol can reach an

object objectSymbol at a certain position objectPosition. When each component

of the geometric state space is mapped through a different mapping function, the

symbolic identifier objectPositionIdentifier only encodes the information needed to

evaluate inverse kinematics, the position of the object f−1(objectPositionIdentifier).

As a result, the symbolic planner realizes that the geometric predicate is independent

from the robot’s current configuration and all other objects’ positions, and can

therefore avoid many future evaluations of that predicate.

On the contrary, in many practical problems, most computation time is spent on

collision checking between all robots and all objects. For the problem of collision-free

multi-robot manipulation, which embraces all scenarios evaluated in this chapter,

most geometric predicates depend on the full state.

Discussion

Given an arbitrary problem instance, it is an important property of the KABouM

planner whether or not it will find a solution if one exists; in other words, whether its

search scheme is complete. Apart from the internals of the symbolic planner, whose

completeness is not in the scope of this discussion, we need to analyze if the search

102 CHAPTER 6. IMPLEMENTATION AND EVALUATION

space is potentially limited by symbolic–geometric mapping, by incomplete sam-

pling, or by geometric predicates that are too strict. Clearly, our bounded ε-precise

geometric predicates make the search incomplete. However, the level of incomplete-

ness is controlled by the precision parameter ε. If a solution path exists further than

ε from any obstacles (or, a state fulfills inclusion predicates with a penetration depth

larger than ε), our bounded ε-precise geometry does not affect completeness. Next,

we consider symbolic–geometric mapping. The necessary condition here is that the

mapping function f discretizes the full geometric search space to different states of

the planner, which is fulfilled by Definition 5. As a result, the symbolic state of

the planner, including geometric identifiers Y , describes the full state of the hybrid

search.

Finally, we need to discuss whether the interaction of the symbolic planner with

geometric predicates, some of which sample at random, will cover the search space.

In the external function mechanism described above, new geometric states may

be generated by random sampling within a geometric predicate, but a geometric

predicate is called only once for each state and each set of arguments. In other

words, the geometric branching factor is one. Even for this low branching factor,

completeness can always be achieved by introducing a dummy action that increments

a random seed and passing that random seed to external functions that need to

sample at random. Effectively, the planner would then add edges in the search

graph that only modify the random seed, and sample the full geometric space while

progressing deeper.

In practical applications of robot manipulation planning, coverage of the geomet-

ric search space can also be achieved by a combination of a random robot motion

action with constrained-space sampling actions pick and place. Since a robot mo-

tion action can be applied in every state, it covers the space of robot configurations.

Constrained-space sampling actions should then take the current geometric configu-

ration as a starting point, and cover the full space of robot and object configurations

as an effect.

To sum up, symbolic–geometric mapping does not limit completeness in the types

of scenarios studied in this chapter. Assuming that the symbolic planner covers its

state space, we only limit the search space by single-sided ε-precise approximation

of the geometry, which is fully intentional.

Robotics Components at Planning Time

When the symbolic planner calls an external function, its arguments are mapped

to geometric states and evaluated by robotics-specific functions. These functions

6.2. SYSTEM EVALUATION 103

perform kinematic and geometric checks, generate random configurations or config-

urations fulfilling geometric constraints, and generate paths. Robotics components

make use of forward and inverse kinematics, sampling with geometric constraints,

evaluation of all bounded geometric predicates with collision and inclusion checking,

and generation of paths in joint and Cartesian spaces.

At the action level, an external function for each type of symbolic action is im-

plemented. While standard action implementations for robot transit and transfer

motion are available, more scenario-specific actions require implementation of a call-

back function, which constructs a path and calls geometric predicates. By re-using

utility functions, scenario-specific functions can be kept short. As an example, the

implementation of a dual-arm handover action needs to construct a Cartesian path,

but it can generate its waypoints using constraint sampling, propagate object mo-

tion using utility functions, and check for collisions using geometric predicates. All

lower-level robotics functions for robot control, kinematics, collision and inclusion

checking, distance queries, trajectory interpolation, and visualization rely on the

Robotics Library [24]. Collision, inclusion, and distance queries are internally han-

dled by the Bullet [121], Solid [122, 124], and ODE [98] libraries. For the scenarios

studied in this chapter, we derived and implemented an efficient closed-form solution

for inverse kinematics (Appendix A.3).

6.1.3 Run-time Components

After a plan is solved with its symbolic actions and robot paths, it is passed to an

execution component. For execution, the plan is traversed from its root node. In

case of a branched plan (Section 3.3.3), the execution component triggers a run-

time sensing action at each branch. A sensing component retrieves the result from

hardware sensors and returns a binary result, based on which execution selects a

positive or negative branch in the plan. All other actions of the plan consist of a

sequence of robot waypoints and other hardware events, such as opening or closing

a gripper. In order to generate smooth trajectories, robot paths are interpolated by

quintic polynomials. Finally, trajectories are sampled at the control frequency of

the robots and joint angles are sent to hardware robot controllers.

6.2 System Evaluation

In this section, we evaluate our KABouM planner on several scenarios, which illus-

trate the different features of the integrated task and motion planning system. In

contrast to the Force Sensing scenario discussed in Section 3.3.3, all scenarios

104 CHAPTER 6. IMPLEMENTATION AND EVALUATION

described in this chapter are solved in an integrated search space of symbolic and

geometric states. Computation times are benchmarked on a desktop computer with

a dual-core 2.8 GHz processor and 12 GB of random access memory. A number of

problem instances are additionally demonstrated in real robot setups.

First, we study pick-and-place tasks in a bimanual setup of two industrial manip-

ulators: the Bartender scenario, which we demonstrated in an earlier work [6], and

a slightly more intricate Bimanual Circular Rearrange scenario, where goal

positions collide with other objects’ initial positions. As a second type of scenario,

we discuss the Stacked n Objects scenario, where a single mobile manipulator

solves a “blocks domain” problem that is combinatorially challenging. Finally, we

study the industrial manufacturing scenario Bimanual Assembly, where two ma-

nipulators assemble a gearbox component. Contrary to the earlier pick-and-place

scenarios, Bimanual Assembly involves more complex types of assembly actions,

some of which require bimanual manipulation.

6.2.1 Bimanual Pick-and-Place Scenarios

To illustrate the solution of bimanual pick-and-place tasks, we describe two closely

related scenarios. Both scenarios contain two six-degree-of-freedom robots with

compliant humanoid hands, and several bottles that are initially located on a table.

Because of the width of the table, most objects and locations are only reachable

by one of the robots. Robots can pick and place objects, and move to random

waypoints. The formal, symbolic domain definition of both scenarios is listed in

Table 6.1.

In the Bartender scenario, the goal is to place all empty bottles inside a certain

area, named dishwasher, which is only reachable by robot2. In order to learn whether

a bottle is empty or not, a sensing action senseIfEmpty is available. Only at run-

time, the system will receive the sensing result from a visual object recognition

component. Therefore, a branched plan with sensing actions must be generated. In

the Bimanual Circular Rearrange scenario, the goal is to place all objects at

the initial location of another object, following a circular order. Of course, this is

an intricate rearrangement task, because all objects act as obstacles and obstruct to

goal location of another.

Discussion of the Bartender Scenario

In contrast to the Force Sensing scenario discussed in Section 3.3.3, the vi-

sual sensing action senseIfEmpty in the Bartender scenario has no preconditions.

Therefore, the planner decides to execute all senseIfEmpty actions first, and then

6.2. SYSTEM EVALUATION 105

Table 6.1: Symbolic domain definition S of the Bartender and Bimanual Circular
Rearrange scenarios.

Action Preconditions Effects

move(robot r) true (no symbolic effects)

pickUp(robot r,
object o)

K(isHandEmpty(r)) ∧
K(¬isGrasped(o))

add(Kf , ¬isHandEmpty(r)),
add(Kf , isGrasped(o)),
add(Kf , isRobotGrasps(r, o))

putDown(robot r,
object o, location
l)

K(isRobotGrasps(r, o)) ∧
K(isGrasped(o))

add(Kf , isHandEmpty(r)),
add(Kf , ¬isGrasped(o)),
add(Kf , isAtLocation(o, l)),
del(Kf , isRobotGrasps(r, o))

Bartender:
senseIfEmpty
(object o)

true add(Kw, isEmptyBottle(o))

Domain Element Element Definition

Types object, robot, location
Constants object o1, o2, . . . , on

robot robot1, robot2
Bartender: location any, dishwasher
Bimanual Circular Rearrange: location any, loc1,
loc2, . . . , locn

Predicates isGrasped, isRobotGrasps, isHandEmpty, isAtLocation
Bartender: isEmptyBottle

Initial knowledge Kf isHandEmpty(robot1), isHandEmpty(robot2),
¬isGrasped(o1), ¬isGrasped(o2), . . . , ¬isGrasped(on)

Goal criteria G Bartender: forall(object o)(K(isAtLocation(o,
dishwasher)) ∧ K(¬isGrasped(o)) ⊕
K(¬isEmptyBottle(o)))
Bimanual Circular Rearrange: K(isAtLocation(o1,
loc2)) ∧ K(isAtLocation(o2, loc3)) ∧ . . . ∧
K(isAtLocation(on, loc1))

106 CHAPTER 6. IMPLEMENTATION AND EVALUATION

A

senseIfEmpty(o1)
. . .
senseIfEmpty(o4)

B

pickUp(robot1, o1)

C

D

putDown(robot1, o1, any)

E

pickUp(robot2, o2)

F

putDown(robot2, o2, dish-
washer)

G

pickUp(robot2, o1)

H I

putDown(robot2, o1, dish-
washer)

Figure 6.2: Action sequence of a solution in the Bartender scenario [6]. In order to
transfer o1 to a dishwasher location, robot1 has to place it at a location where the workspaces
of both robots intersect (Image D).

generates pick-and-place actions for each possible outcome. An action sequence for

an instance of four bottles, two of them empty, is shown in Figure 6.2. This se-

quence was solved and executed by an early version of our system, details of which

are described in [6]. In this scenario, we can observe that the KABouM planner

automatically solves sequences of transfers to overcome workspace limitations of

multiple robots. In this example, object o1 can only be reached by robot1, which in

turn cannot reach the goal location dishwasher. As a viable plan, o1 is placed at a

location in reach of both kinematics (Figure 6.2 D), and robot2 can finally transfer

it to a goal location.

6.2. SYSTEM EVALUATION 107

A B

pickUp(robot1, o3)

C

putDown(robot1, o3, any)

D

pickUp(robot1, o1)
putDown(robot1, o1, any)

E

pickUp(robot1, o3)
pickUp(robot2, o1)

F

putDown(robot1, o3, loc1)

G

pickUp(robot1, o2)
putDown(robot1, o2, loc3)

H

putDown(robot2, o1, loc2)

I

Figure 6.3: Action sequence of the shortest solution for a Bimanual Circular Rear-
range instance of three objects that are to be reordered. In a circular rearrange, objects
block the goal location of another. In this scenario, some areas are only reachable by one of
the two manipulators, and grasps are likely to collide with other objects.

108 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Table 6.2: Evaluation of the Bimanual Circular Rearrange scenario with three ob-
jects. Computation time and procedure calls are measured with respect to the search strat-
egy of the symbolic planner. Averages are taken over 10 trials, standard deviation is shown
in gray.

Depth-first
Search

Breadth-first
Search

Iterative Deep-
ening Search

Total Time [s] 0.4119 ±0.0055 4.8699 ±0.7699 17.4939 ±5.7788
Symbolic Planning [s] 0.0518 ±0.0007 0.5905 ±0.1092 2.2185 ±0.7653
Geometric Search [s] 0.3601 ±0.0048 4.2794 ±0.6607 15.2754 ±5.0134
Inverse Kinematics
Calls

13969 ±229 116722 ±15268 409582 ±148753

Inverse Kinematics [s] 0.0210 ±0.0005 0.1958 ±0.0283 0.6860 ±0.2429
Collision Checks 2197 ±16 26229 ±4366 93624 ±30699
Collision Checking [s] 0.2913 ±0.0010 3.5438 ±0.5422 12.6297 ±4.1337
Positive Collision
Checks [%]

15.94 ±2.65 20.84 ±0.56 17.68 ±1.23

Geometric States 412 ±14 2067 ±388 2525 ±52
Actions in Solved Plan 440.00 ±7.07 10.66 ±0.47 22.00 ±2.82

Discussion of the Bimanual Circular Rearrange Scenario

Compared to theBartender scenario, transfer actions in theBimanual Circular

Rearrange scenario are more likely to collide with other objects, because objects’

initial and goal locations are identical up to a circular rearrangement. A typical

solution for an instance with three objects is shown in Figure 6.3. In this plan,

many of the possible object–object collisions are avoided by picking up two objects

with both robots (Figure 6.3 E).

To evaluate this scenario, we measure computation times of various components

of the planner and compare the three search schemes depth-first, breadth-first, and

iterative deepening search. The benchmark results for an instance with three objects

are listed in Table 6.2. In general, geometric search requires most computation

time, with most time spent on collision checking of robot paths. Depth-first search

is fastest at solving this scenario, and constructs the smallest number of distinct

geometric states. However, its plans are too long to be executed in a real setup. Note

that even breadth-first search, which produces rather short plans, is not guaranteed

to find the shortest possible plans because of the limited geometric branching factor.

6.2. SYSTEM EVALUATION 109

(a) Initial state: a single
gray block is separated from
a stack of n− 1 blocks.

(b) Intermediate state (c) Goal state: the gray
block is located under the
original stack.

Figure 6.4: The Stacked n Objects scenario was implemented and demonstrated on a
mobile manipulator with n = 3 by S. Nogina [125]. (Photographs provided by S. Nogina)

6.2.2 Stacked n Objects Scenario

In the task and motion planning scenarios discussed so far, collisions are common

and prevent many actions, but already small changes to the plan made most actions

feasible. As in many pick-and-place scenarios, an object that presents an obstacle

and would interfere with too many actions can usually be parked at a location in free

space that does not interfere. In the Stacked n Objects scenario, we purposely

define a more difficult environment and goal criterion to explore the limits of our

KABouM planner. For this, we drastically reduce the free space, and choose a

symbolic domain and goal criterion that cannot be decomposed into independent

subgoals. In this scenario, a mobile manipulator is supposed to move a new block

under an existing stack of n − 1 blocks, keeping the order of the existing stack.

Only three locations are available to stack blocks. Blocks may only be picked up

from and put down to the top of a stack, or put down at a free location to form

a stack of a single block. Note that this scenario was already discussed in a 2013

master thesis [125] and another earlier work [9], but is here evaluated with a newer

and substantially different version of the planning system. Figure 6.4 shows this

scenario for the case n = 3, where the initial stack is located at the left location,

and the new, gray block at the center. After several pick and place actions, the gray

block is placed under the original stack, which is the only placement to fulfill the

goal criterion.

Both the symbolic goal and the small number of free locations make this scenario

particularly hard to solve. First, only three stacks are available to place objects.

Therefore, free space is very limited and objects that prohibit other actions cannot

simply be “parked” at a different location. As a result, the search for feasible object

transfers is a combinatorial one rather than a geometric one. Second, the symbolic

110 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Table 6.3: Symbolic domain definition S of the Stacked n Objects scenario.

Action Preconditions Effects

move(object
this, object
other)

K(isHighest(this)) ∧
K(isHighest(other))
∧
¬K(isAStack(this))

del(Kf , isHighest(other)),
forall(object o) (K(getOneBelow(this) =
o) =⇒ add(Kf , isHighest(o))),
add(Kf , getOneBelow(this) = other)

Domain Element Element Definition

Types object
Constants object o1, o2, . . . , on, stack1, stack2, stack3
Predicates isAStack, isHighest
Functions getOneBelow : object →→ object
Initial knowledge Kf isAStack(stack1), isAStack(stack2), isAStack(stack3),

isHighest(on), isHighest(o1), isHighest(stack3),
getOneBelow(on) = on−1, getOneBelow(on−1) = on−2,
. . . , getOneBelow(o3) = o2, getOneBelow(o2) =
stack1, getOneBelow(o1) = stack2

Goal criteria G K(stack1 = getOneBelow(o1)) ∧ K(o1 =
getOneBelow(o2)) ∧ K(o2 = getOneBelow(o3))
∧ . . . ∧ K(on−1 = getOneBelow(on))

task is particularly hard because subgoals are highly dependent and do not allow

decomposition [15, p. 378]. States that fulfill part of the goal criterion are usually

many steps away from the single goal state. Note that the initial state already

meets almost all conjunctions of the goal criterion, even though it is at least 2n− 1

symbolic actions away from the goal state. In this way, the Stacked n Objects

scenario clearly shows Sussman’s anomaly [126], in that decomposition approaches

fail and a global search is required to find a valid plan. One can observe that choices

early in plan, such as blocking a single object by stacking an object on top of it,

may render the goal infeasible and entails a long backtracking search after many

actions have been evaluated. Importantly, the benefit of an action cannot be rated

by standard heuristics. In particular, partial fulfillment of the goal conjunction is

not a helpful metric. At the same time, correct plans are sparse in the search space.

The combination of these properties makes this scenario difficult, such that valid

solutions can only be found in an exhaustive, global search.

6.2. SYSTEM EVALUATION 111

Domain Definition

The symbolic domain for this scenario is defined in Table 6.3. Since the geometric

state space is discrete, the preconditions and effects of transferring objects between

stacks can be modeled symbolically. One way to define this problem is to intro-

duce symbols for all stack locations and objects, and order these by a mapping

getOneBelow, which maps from one object to the object or stack located directly

below. Rather than describing this relation by a binary predicate, this function

notation allows a simpler formulation of the effects of the transfer action move. For

most symbolic planners other than the PKS planner with its function mechanism,

a more verbose formulation with a binary predicate could replace this syntax. The

central part of the symbolic domain definition is the single action move. Using this

action, the robot picks up an object this and puts it down on top of an object or

stack location other. Clearly, both objects involved must be on top of a stack, which

is available through a predicate isHighest. As an effect of this action, the second

object or stack location is no longer the top of a stack. Also, the function value

getOneBelow(this) for the transferred object is updated to represent the target lo-

cation. Finally, the object or stack location that was previously located under the

transferred object becomes top of a stack. In the current implementation of the

symbolic planner, this latter expression requires iteration over all objects with the

forall syntax.

At the geometric level, the Stacked n Objects scenario requires only genera-

tion of grasp poses and collision checking for all motion paths. Since the robot only

needs to manipulate objects on top of a stack, the default grasping angle always

succeeds, and swept volumes of all robot paths are always free of collisions for the

sizes of stacks covered by our evaluation.

Example Solution

Figure 6.5 shows a solution for the Stacked n Objects with n = 4 objects. Since

the solution was found through a breadth-first search, it is shortest in terms of the

number of symbolic actions. Essentially, the robot first relocates the stack of n− 1

objects to a free location (Figure 6.5 A–F). It can then move the gray block o1

to its goal location (Figure 6.5 G), and finally stack all other blocks as required

(Figure 6.5 H–L). Note that, even though most blocks are depicted as blue, they

are not interchangeable and the goal criteria require the final stack to be ordered

from o1 the lowest to on on top.

112 CHAPTER 6. IMPLEMENTATION AND EVALUATION

A B

move(o4, stack3)

C

D

move(o3, o4)

E

move(o2, o3)

F

G

move(o1, stack1)

H

move(o2, o1)

I

move(o3, o2)

J

move(o4, o3)

K L

Figure 6.5: Action sequence of the shortest solution for the Stacked n Objects scenario
with n = 4 objects. The robot is supposed to place the gray block under an existing stack of
three blocks (shown in blue), and may only move objects on top of three stacking locations.
The solution was obtained by a breadth-first search, requiring 50ms for symbolic planning
and 17ms for geometric planning, including inverse kinematics and collision checking.

6.2. SYSTEM EVALUATION 113

Table 6.4: Evaluation of the Stacked n Objects scenario, where n objects are to be
stacked in a certain order, using only three stacks. Computation time and procedure calls
are measured with respect to the number of objects n in the problem instance and the search
strategy of the symbolic planner.

Inverse
Kinematics

Collision
Checking

N
u
m
b
er

of
ob

je
ct
s
n

T
ot
a
l
T
im

e
[s
]

S
y
m
b
ol
ic

P
la
n
n
in
g
[s
]

G
eo
m
et
ri
c

S
ea
rc
h
[s
]

Calls Time [s] Calls Time [s] S
y
m
b
ol
ic

A
ct
io
n
s
in

S
ol
u
ti
on

Depth-first symbolic search

2 0.017 0.001 0.015 14 0.00003 158 0.015 7
3 0.055 0.005 0.050 94 0.00011 752 0.049 47
4 0.329 0.041 0.287 556 0.00060 4449 0.281 278
5 2.224 0.430 1.792 3096 0.00349 27796 1.758 1548
6 22.787 4.175 18.610 28058 0.03391 287931 18.286 14029
7 286.064 86.302 199.550 266062 0.37553 3089850 196.133 133031
8 (timeout after 300 seconds)

Breadth-first symbolic search

2 0.009 0.001 0.008 6 0.00001 139 0.008 3
3 0.018 0.005 0.012 10 0.00001 192 0.012 5
4 0.067 0.050 0.017 14 0.00001 263 0.016 7
5 0.477 0.454 0.022 18 0.00002 355 0.021 9
6 4.658 4.627 0.030 22 0.00003 474 0.030 11
7 (timeout after 300 seconds)

Iterative deepening symbolic search

2 0.011 0.001 0.009 10 0.00001 141 0.009 5
3 0.025 0.012 0.013 14 0.00001 194 0.012 7
4 0.329 0.302 0.026 32 0.00004 408 0.025 16
5 0.744 0.718 0.025 28 0.00003 396 0.025 14
6 7.204 7.166 0.038 36 0.00004 588 0.037 18
7 112.615 110.243 1.618 50 0.04056 927 1.462 25
8 (timeout after 300 seconds)

114 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Quantitative Evaluation

Since the Stacked n Objects scenario allows an automatic generation of domain

definitions controlled by the number of objects n, we can study our KABouM plan-

ner more quantitatively and evaluate its behavior and performance with respect

to the problem size n. In addition to the parameter n, we again measure its per-

formance under three different search strategies for symbolic planning—depth-first

search, breadth-first search, and iterative deepening. Since this scenario is fully de-

terministic, a single measurement suffices for each instance. The results are listed

in Table 6.4.

The most important observation is that the total planning time, while short

for small numbers of objects, increases tremendously with each additional object.

After seven objects, the problem becomes computationally infeasible. Apparently,

the symbolic search time grows super-polynomially with the size of the problem.

For n = 8 objects and for all three search schemes, symbolic planning exceeds all

available random-access memory, after which a successful solution can no longer be

expected. Since geometric planning is only performed once for each move, and in-

verse kinematics and collision checking succeed at the first try in the scenario, the

number of geometric queries scales almost proportionally with the number of sym-

bolic actions. Search schemes that produce short symbolic solutions, breadth-first

and iterative deepening searches, therefore require very little geometric planning.

In the n = 7 instances, computation time was already prolonged by some mem-

ory swapping, which also affected the efficiency of geometric computations. In all

smaller instances, geometric search time is proportional to the number of symbolic

actions in a solution.

In general, the two types of geometric queries contribute only little to the overall

search time. Since the grasp planning and inverse kinematics routine was manually

derived and implemented for the five degree-of-freedom rotational manipulator, it

requires very little computation time. Collision queries are slightly higher in numbers

because multiple queries are needed to ensure the absence of obstacles along the path

of a transfer motion. Note that a linear configuration-space path for transferring

a block from one stack to another does not collide in this scenario, which keeps

motion planning very simple. With bounding sets of convex polyhedra available for

all objects and the robot manipulator, collision checks are purely convex and can

be computed with the Gilbert/Johnson/Keerthi (GJK) algorithm [100]. Using the

implementation within the Solid library [124], an average collision check requires no

more than 100µs.

To summarize, we voluntarily included the Stacked n Objects scenario in

6.2. SYSTEM EVALUATION 115

order to explore the computational limitations of the Knowledge-level Action and

Bounding Geometry Motion planner. Even though the symbolic domain definition

of this scenario is not very complicated, more domain-specific knowledge would be

required to solve larger problem instances. This result shows the importance of

future work in symbolic planning and motivates further research in heuristic search

schemes. Future enhancements to the heuristic search of the PKS planner will

directly improve the results of the integrated system.

6.2.3 Bimanual Assembly Scenario

While the previous scenarios highlighted individual aspects of the KABouM planner,

Bimanual Assembly is a more complex scenario with several types of objects and

actions. In this scenario, two industrial manipulators are supposed to manufacture a

component of a gearbox (Figure 6.6f). The two robots are equipped with two kinds

of parallel grippers, capable of grasping objects at different poses and assembling

different parts. All four objects necessary for the final product are initially located

on a table, depicted in Figure 6.7a. For a valid goal state in this scenario, a gearbox

object must be located on the table (Figures 6.7b, 6.6f). The Bimanual Assem-

bly scenario has been demonstrated with a novel, interactive robot programming

system [127] as part of an industrial use-case of the SMErobotics project [128], but

has not been solved with integrated task and motion planning before.

The initial types of available objects are a bearing, a pipe, and a mechanical tree

(Figure 6.6a–c). A bearing can be grasped by both robots with different tools; one

robot can grasp a bearing from its inner side, the other robot from outside. The

inner grasp is necessary to insert a bearing into a pipe, which forms a subassembly

(Figure 6.6d); because tolerances are low, both parts must be held by robots and

assembled bimanually. The outer grasp allows assembling a bearing and a mechani-

cal tree (Figure 6.6e). In addition, each robot can hand over a bearing to the other

one. To complete the set of possible actions, robots can move to a different config-

uration, which also allows transferring grasped objects, and both subassemblies can

be assembled to create a gearbox component. Visual examples for all these actions

are shown in Figure 6.8.

Domain Definition

In order to model the assembly actions in this scenario symbolically, we introduce

unary predicates to represent the type of an object, isABearing, isAPipe, isATree,

and isAGearbox. An assembly action then requires objects of specific types as a

precondition, and changes the type of an object as an effect. For the other object

116 CHAPTER 6. IMPLEMENTATION AND EVALUATION

(a) Bearing (b) Pipe (c) Mechanical tree

(d) Subassembly of pipe and
bearing

(e) Subassembly of mechan-
ical tree and bearing

(f) Gearbox component as-
sembled from both sub-
assemblies

Figure 6.6: Objects in the Bimanual Assembly scenario. The final gearbox is assembled
from two bearing objects, a pipe object, and a mechanical tree object.

that is being assembled, the isContained predicate is set, so it can no longer be

manipulated individually. The full symbolic action definition is listed in Table 6.6.

To complete the symbolic domain definition, pick-and-place behavior with multiple

robots is modeled by the predicates isGrasped, isRobotGrasps, and isHandEmpty,

similar to the Bartender scenario described earlier. All predicates and a problem

instance with the minimum set of objects are given in Table 6.5.

In addition to the symbolic preconditions listed in Table 6.6, every symbolic

action in this domain includes exactly one geometric function as a precondition. If all

symbolic preconditions are fulfilled, an action is evaluated geometrically by passing

its arguments and the current geometric state identifier. Action move samples a

new robot configuration at random, and all other actions generate their waypoints

relative to the current configuration, most of them by solving geometric constraints.

After that, the newly generated path is checked for collisions. If any of these steps

fail, false is returned to the symbolic planner. On success, the geometric state is

propagated, and the symbolic planner receives its updated identifier by calling an

external function as part of the action’s effects.

6.2. SYSTEM EVALUATION 117

(a) Initial state (b) Goal state

Figure 6.7: Initial and goal states in an example solution of the Bimanual Assembly
scenario.

Evaluation

For evaluation, we again measure computation time for the several steps of the

KABouM planner, compare between the three search schemes, and observe the dif-

ference between bounded geometric predicates and an unoptimized geometry. The

results are listed in Table 6.7.

In general, all search schemes succeed to create viable plans under all geometric

representations and collision checking libraries. We first analyze the difference in

performance between our bounding convex decomposition of the geometry compared

to conventional triangle meshes. When using a bounding convex decomposition

of the geometry, it takes less than one second to solve the Bimanual Assembly

scenario in a depth-first search, and less than twenty seconds in other search schemes.

In contrast, in a conventional geometry of triangle meshes, KABouM needs more

than ten times the computation time, under all search schemes.

Because the performance of a collision library could easily be affected by subop-

timal settings or poor choice of broad-phase algorithms, we take additional measure-

ments on two completely different collision libraries. The Solid collision library [122]

only implements convex–convex checking, which is used by our bounded geometric

118 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Table 6.5: Symbolic predicates and problem instance definition of the Bimanual Assem-
bly scenario.

Domain Element Element Definition

Types object, robot
Constants object o1, o2, o3, o4

robot robot1, robot2
Predicates isGrasped, isRobotGrasps, isHandEmpty, isContained,

isABearing, isAPipe, isATree, isAGearbox,
containsBearing, isContained

Initial knowledge Kf isABearing(o1), isABearing(o2), isAPipe(o3), isATree(o4),
isHandEmpty(robot1), isHandEmpty(robot2),
¬isContained(o1), ¬isContained(o2), ¬isContained(o3),
¬isContained(o4),
¬isGrasped(o1), ¬isGrasped(o2), ¬isGrasped(o3),
¬isGrasped(o4)

Goal criteria G exists(object o) (K(isAGearbox(o)) ∧
K(¬isGrasped(o)))

predicates. Its performance to evaluate bounded geometric predicates is equal to or

slightly better than the Bullet physics library. The Open Dynamics Engine [98] in

turn provides collision checking for triangle meshes. Compared to Bullet, its com-

putation time is approximately equal. As a result, bounded geometric predicates

are significantly more efficient in this scenario, irrespective of a particular collision

checking library. Based on these measurements, we formulate the following result.

Proposition 4. Bounded geometric predicates, which operate on a bounding convex

decomposition of the exact geometry, allow more efficient robot task and motion

planning compared to geometric predicates that operate on triangle meshes.

After comparing different types of geometry and collision libraries, we consider

the different search schemes. On average, depth-first search is faster to find a so-

lution, but its solutions contain more actions than needed (of all types). While

breadth-first search and iterative deepening search also evaluate all types of actions,

their final plan is of minimal length, or contains one additional move action. During

planning, most time is spent on geometric evaluation, in particular collision checking

of robot paths. Even though all types of collisions occur—robot/object, robot self-

collisions, object/object, robot/robot—only few generated paths must be discarded

because of collisions.

The search schemes show different behaviors of how many distinct geometric

states are generated. Breadth-first search builds a graph of hundreds of distinct

6.2. SYSTEM EVALUATION 119

Table 6.6: Symbolic action definition A of the Bimanual Assembly scenario.

Action Preconditions Effects

move(robot r) true (no symbolic effects)

pickUp(robot r,
object o)

K(isHandEmpty(r)) ∧
K(¬isGrasped(o)) ∧
K(¬isContained(o))

add(Kf , ¬isHandEmpty(r)),
add(Kf , isGrasped(o)),
add(Kf , isRobotGrasps(r, o))

putDown(robot r,
object o)

K(isRobotGrasps(r, o)) ∧
K(isGrasped(o)) ∧
K(¬isContained(o))

add(Kf , isHandEmpty(r)),
add(Kf , ¬isGrasped(o)),
del(Kf , isRobotGrasps(r, o))

assemble
PipeBearing(robot
r, object o, robot
r’, object o’)

K(r ̸= r’) ∧
K(isRobotGrasps(r, o)) ∧
K(isRobotGrasps(r’, o’)) ∧
K(isAPipe(o)) ∧
K(isABearing(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

add(Kf , isHandEmpty(r’)),
add(Kf , isContained(o’)),
add(Kf , containsBearing(o)),
del(Kf , isRobotGrasps(r’,
o’))

handoverBearing
(robot r, object o,
robot r’)

K(r ̸= r’) ∧
K(isRobotGrasps(r, o)) ∧
K(isABearing(o)) ∧
K(¬isContained(o)) ∧
K(isHandEmpty(r’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , isRobotGrasps(r’,
o)),
add(Kf , isHandEmpty(r)),
add(Kf , ¬isHandEmpty(r’))

assemble
BearingTree(robot
r, object o, object
o’)

K(isRobotGrasps(r, o)) ∧
K(¬isGrasped(o’)) ∧
K(isABearing(o)) ∧
K(isATree(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , ¬isGrasped(o)),
add(Kf , isContained(o)),
add(Kf , isHandEmpty(r)),
add(Kf , containsBearing(o’))

assemblePipeTree
(robot r, object o,
object o’)

K(isRobotGrasps(r, o)) ∧
K(¬isGrasped(o’)) ∧
K(isAPipe(o)) ∧
K(isATree(o’)) ∧
K(containsBearing(o)) ∧
K(containsBearing(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , ¬isGrasped(o)),
add(Kf , isContained(o’)),
add(Kf , isHandEmpty(r)),
add(Kf , isAGearbox(o))

120 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Table 6.7: Evaluation of the Bimanual Assembly scenario. Computation time and
procedure calls are measured with respect to the search strategy of the symbolic planner
and the type of geometry and collision checking library. Averages are taken over 12 trials,
standard deviation is shown in gray.

Depth-first
Search

Breadth-first
Search

Iterative Deep-
ening Search

Bounded geometric predicates ε < 0.02m on a bounding convex decomposition
of the scene geometry, using Bullet Physics Library

Total Time [s] 0.737 ±0.429 13.532 ±0.933 11.730 ±0.413
Symbolic Planning [s] 0.009 ±0.005 0.154 ±0.015 0.130 ±0.005
Geometric Search [s] 0.728 ±0.424 13.378 ±0.918 11.600 ±0.408
Inverse Kinematics Calls 191.75 ±97.68 3621.50 ±359.78 3194.25 ±150.89
Inverse Kinematics [s] 0.001 ±0.001 0.018 ±0.001 0.015 ±0.001
Collision Checks 2845 ±1600 56770 ±4547 49169 ±1826
Collision Checking [s] 0.713 ±0.416 13.132 ±0.893 11.382 ±0.396
Positive Collision Checks
[%]

10.71 ±2.88 6.31 ±0.60 6.84 ±0.43

Geometric States 48.50 ±32.15 322.00 ±174.51 133.25 ±30.45
Actions in Plan 26.75 ±7.04 6.00 ±0.00 7.00 ±0.00
Waypoints in Plan 53.50 ±11.84 21.00 ±0.00 22.00 ±0.00

Variant: Bounded geometric predicates ε < 0.02m, using Solid

Total Time [s] 0.309 ±0.060 11.721 ±1.826 12.663 ±3.523
Collision Checking [s] 0.295 ±0.058 11.192 ±1.748 12.060 ±3.317

Variant: Exact geometric predicates on the original scene geometry, using Bullet
Physics Library

Total Time [s] 11.898 ±7.212 322.049 ±23.507 249.637 ±20.253
Symbolic Planning [s] 0.008 ±0.005 0.277 ±0.017 0.209 ±0.019
Geometric Search [s] 11.889 ±7.207 321.772 ±23.494 249.427 ±20.235
Inverse Kinematics Calls 140.00 ±86.98 3791.00 ±258.85 3096.00 ±318.01
Inverse Kinematics [s] 0.001 ±0.001 0.037 ±0.002 0.028 ±0.003
Collision Checks 1899 ±1248 59293 ±4136 47699 ±3919
Collision Checking [s] 11.874 ±7.199 321.403 ±23.475 249.135 ±20.205
Positive Collision Checks
[%]

8.07 ±1.33 6.55 ±0.21 7.95 ±2.05

Geometric States 35.00 ±20.31 362.75 ±149.95 108.75 ±69.56
Actions in Plan 25.25 ±2.50 6.00 ±0.00 7.00 ±0.00
Waypoints in Plan 48.75 ±3.50 21.00 ±0.00 22.00 ±0.00

Variant: Exact geometric predicates, using the Open Dynamics Engine

Total Time [s] 7.701 ±6.599 480.446 ±62.833 405.665 ±65.473
Collision Checking [s] 7.681 ±6.590 479.736 ±62.733 405.098 ±65.388

6.2. SYSTEM EVALUATION 121

(a) Action move (b) Action pickUp (c) Action
assemblePipeBearing

(d) Action handoverBearing (e) Action
assembleBearingTree

(f) Action assemblePipeTree

Figure 6.8: Examples of the actions in the Bimanual Assembly scenario. Action put-
Down is not shown; it is the inverse of pickUp. In each image, waypoints before the resulting
state are shown in transparent colors.

geometric states connected by move, pickUp, and putDown actions until finding the

shortest path in depth six. In contrast, depth-first search finds fewer circles in the

graph of geometric states. Since it never returns to states before a part has been

assembled, it evaluates considerably fewer actions until finding a solution.

6.2.4 Conclusion

In this chapter, we have described the implementation of the Knowledge-level Action

and Bounding Geometry Motion planner (KABouM), and studied its performance on

a variety of scenarios, from simple pick-and-place tasks to complex assembly actions.

Contrary to other approaches to rearrangement and assembly, or classical multi-

layered robot control, KABouM finds solutions in the full state space of discrete

actions and continuous-valued geometric states. Apart from discrete uncertainty

that can be resolved through sensing actions at run-time, we assume full information

122 CHAPTER 6. IMPLEMENTATION AND EVALUATION

of all objects and manipulators. If this condition is met, KABouM can be applied

to a wide variety of tasks, ranging from service to manufacturing.

On the one hand, integrated task and motion planning can generate complex

behavior automatically. It performs a complete search even for complex scenarios,

and allows tasks being specified on a domain definition level. As an example, objects

are re-grasped when necessary, and even sequences of grasps and bimanual opera-

tions are synthesized. Assembly steps are ordered according to their preconditions

and effects, rather than by manually-defined plans. Complex geometric conditions

and effects are allowed, including reachability with multiple manipulators, avoid-

ing obstacles, but allowing contact of tools and assemblies, and configurations can

be specified by geometric constraints. Solving geometric constraints even allows

bimanual manipulation to be generated automatically, rather than at predefined

waypoints. On the other hand, integrated task and motion planning can generate

correct robot paths from concise domain definitions, which would be error-prone or

even infeasible to program in classical architectures. KABouM verifies all geometric

states, even those that may easily be overlooked by a human programmer. As an

example, it can coordinate multi-robot motion of diverse actions while avoiding all

possible types of collisions.

Chapter 7

Conclusion

123

124 CHAPTER 7. CONCLUSION

In the following, we summarize the main contributions beyond the state of the

art: the introduction of single-sided geometric predicates together with the bounding

mesh algorithm and their integration in a knowledge-level planning system, capable

of solving complex robot manipulation and assembly problems. Finally, we conclude

by pointing out applications and further lines of research.

7.1 Contribution

In this thesis, we have addressed the robot task and motion planning problem, in

particular its geometric side. First, we provided a formal problem definition in

Chapter 3. We began our discussion with symbolic planning on the knowledge

level and solved an illustrative problem that allows separate symbolic and geomet-

ric planning. In order to solve general problems where symbolic planning cannot

be separated from geometric planning, we then discussed the design of geometric

predicates and sampling functions, which serve as a symbolic–geometric mapping.

Predicates and sampling functions define the interface between both discrete and

continuous state spaces, which must be designed carefully to cover the combined

search space. Because of this large search space, the efficiency of geometric pred-

icates has a great impact on performance and the size of the problems that can

be handled. In order to increase their efficiency, we used the fact that collision

and inclusion have asymmetric tolerances; collisions must always be detected, but

non-collisions may be ignored up to a certain precision. In particular, we devel-

oped a new set of bounded geometric predicates, which operate on a single-sided

approximation of the geometry (Chapter 4). Note that the idea of single-sided ap-

proximation is novel to the field of robotics; prior works are limited to silhouette

clipping and ray intersection checks. To achieve this type of approximation, we de-

rived the new bounding mesh algorithm. This algorithm generates an approximate

mesh that encloses the original geometry at a precision that can be parameterized.

At a precision of 1%, the bounding mesh algorithm reduces vertex counts by a fac-

tor of 10–20 for the evaluated robot geometries. In conjunction with a bounding

convex decomposition of the scene, geometric predicates operate efficiently in com-

plex scenarios. Besides their application to task planning, we discuss the general

properties of bounding meshes and bounding convex decomposition. Among these,

we observed that a bounding convex decomposition allows collision detection and

distance computation within lower and more predictable worst-case time limits than

regular meshes. To complete the symbolic–geometric interface, we proposed an ex-

pressive, task-level formulation for sampling with geometric constraints (Chapter 5).

7.2. FUTURE WORK 125

Our formulation accepts general constraints, such as coincidence, parallelism, and

distance, between robot tool spaces and objects. We then develop a sample–project

routine to cover lower-dimensional constraint spaces, which could not be covered by

rejection sampling. In Chapter 6, we finally described the software components of

the KABouM system. To complete the integration, we defined symbolic–geometric

state mapping through a lexicographic order on geometric states.

For evaluation, we demonstrated the effectiveness of the KABouM system in

a wide range of scenarios, including dual-arm setups, combinatorially challenging

tasks, and bimanual assembly. Among these scenarios was an assembly task with

seven different types of transfer and manipulation actions, two of them bimanual,

whose solution involves multi-robot collision checking, sequences of re-grasps, and

synthesis of bimanual actions. In further experiments, we analyzed different search

schemes and show that bounded geometric predicates are more efficient than regular

collision checking. In conclusion, we can solve scenarios that are too complex and

too error-prone to be programmed manually. Our search progresses in a hybrid state

space, which could not be covered by sequential path planning, and verifies complex

preconditions, such as multi-robot collisions, which could easily be overlooked by a

human programmer.

To conclude, we introduce the idea of single-sided geometric approximation to

the field of robotics, implement suitable algorithms, apply this approach to efficient

task and motion planning, contribute to sampling with geometric constraints, and

finally integrate a system to solve complex task and motion planning problems.

7.2 Future Work

Robot task and motion planning is clearly part of an interdisciplinary area of research

between robot path planning, manipulation, computer geometry, and automated

planning. The methods proposed in this thesis can likewise be developed further in

different lines of research.

Integrated Task and Motion Planning Systems

The described KABouM system (Chapter 6) uses single-sided geometric predicates

and constraint space sampling in conjunction with the Planning with Knowledge

and Sensing (PKS) planner, which reasons in a modal language of knowledge. It

would be interesting to integrate the geometric functions with a different automated

planner for comparison. Even though most other planners would not provide reason-

ing with discrete uncertainty and sensing actions, conventional planners may solve

126 CHAPTER 7. CONCLUSION

rearrangement manipulation with different types of heuristics and scale differently

with respect to the number of objects.

Besides the integration with additional symbolic planners, additional scenarios

and domains can be implemented and evaluated. The scenarios discussed in the eval-

uation already cover bimanual manipulation and assembly, where task and motion

planning can provide an automatic solution to generate robot behavior that would

be impractical to program manually. Future work may include a discussion of more

complex scenarios with multiple types of objects and containers, larger workspaces,

and multi-action logistics or automation tasks, which most evidently require plan-

ning on the task level. Even though additional demonstrations would provide little

theoretical insight, they would help champion task and motion planning for indus-

trial applications.

Task-level Constraint Formulation

The task-level formulation for geometric constraints between kinematics and ob-

jects is inspired by mating operations in computer-aided design software, where

constraints are regarded as an intuitive and consistent way to define assemblies of

multiple parts. Compared to other formulations in task-level robot programming,

most of which are geared towards control [112, 113], our formulation for geometric

relations may be a promising approach to more intuitive robot programming by non-

experts. As future work, the geometric constraint formulation could be developed

further to a robot programming framework that allows non-expert users to specify

and solve manipulation tasks.

Bounding Meshes and Bounding Convex Decomposition

The geometric approximation algorithms presented in Chapter 4 follow greedy, lo-

cally iterative strategies. When bounding meshes are generated in a pre-processing

routine, efficiency is of little concern; a slightly higher approximation quality may

potentially be achieved in a global search. For general mesh simplification, several

global techniques are known [75]. Some of them may be adapted to single-sided

approximation and open a line of research in global bounding mesh optimization.

Analogously, bounding convex decomposition can be developed further by applying

heuristics used in conventional convex decomposition. Approximate convex decom-

position, which is hard to perform efficiently, usually follows divide-and-conquer

searches and may likewise be adapted to bounding convex decomposition. At the

moment, this is achieved by applying algorithms one after another, but several ap-

proximate convex decomposition routines already incorporate conventional mesh

7.3. FURTHER APPLICATIONS 127

simplification techniques. Integrating both algorithms can potentially improve the

quality of the result.

7.3 Further Applications

Similar to future lines of research, applications likewise arise in different areas, in-

cluding task and motion planning for service and manufacturing, robot control with

real-time collision avoidance, and computer graphics. From a general perspective,

task and motion planning allows robots to perform abstract tasks automatically

and autonomously. It can solve difficult goals, plan in complex geometries, and raise

domain specification to the task level. A typical application domain with multi-

faceted goals is service robotics, where a robot needs to perform different types of

actions, including speech, motion, and manipulation. Complex geometries are very

common in manufacturing settings, where space is limited and tolerances are small.

Solving tasks automatically makes production more flexible and reduces setup times

between product variants. Furthermore, task and motion planning can generate

efficient plans to coordinate multiple industrial manipulators and use re-grasping

and bimanual manipulation behavior that could hardly be programmed by hand.

Apart from service and manufacturing robotics, goal definition on the task level

also applies to tele-operation of remote robots and robots in space, where limited

communication forbids direct feedback control.

Besides intelligent robotics, the individual geometric algorithms of the KABouM

system directly apply to computer geometry and real-time collision avoidance. Bound-

ing mesh approximation is in no way limited to the robotics domain, and more

generally applies to problems in computer geometry and computer graphics. Most

computer geometry algorithms that operate on meshes can be made more efficient

when bounding volumes of these meshes are available [75, 79]. Bounding volume

hierarchies have long been used, in some cases implicitly, to speed up search and

intersection problems. In terms of the bounding volume hierarchy, bounding meshes

can be seen as a new, intermediate level between very coarse bounding spheres or

bounding boxes on the one hand and the exact mesh on the other hand. In computer

geometry, bounding meshes can speed up the broad phase of searches, intersection,

and inclusion queries. In search applications, bounding meshes allow fast approx-

imate queries and therefore earlier pruning of search trees, which may further be

processed by exact algorithms. For other applications, bounding meshes directly

apply to problems that allow a single-sided approximate solution. As an example,

clipping operations can directly be performed on bounding meshes, and distance

128 CHAPTER 7. CONCLUSION

computation may allow a single-sided approximation in many settings. Apart from

computer geometry algorithms, bounding mesh computation can be used interac-

tively in end-user software. In computer graphics software, the bounding mesh

operation may serve as a feature to achieve certain visual effects or to simplify a

selection of a scene at the user’s control.

In conjunction with convex decomposition, bounding convex decomposition makes

general meshes accessible to algorithms that operate on convex shapes, while en-

suring a single-sided approximation. In general, applications to bounding convex

decomposition may include physics simulation, online collision checking, and colli-

sion avoidance. Most prominently, bounding convex decomposition allows efficient

distance and penetration depth computations that would otherwise be forbiddingly

expensive. In contrast to approximate convex decomposition, measured distances

and penetration depths are then lower and upper limits. Furthermore, intersection

and distance between convex shapes can be computed within low worst-case time

limits [100]. Therefore, we can guarantee real-time performance for online robot

control and collision avoidance schemes that operate on a bounding convex decom-

position of the robot geometry. As a possible application, robot manufacturers

can integrate distance computation and collision avoidance in real-time controllers,

which are guaranteed effective for environments up to a certain complexity. Bound-

ing convex decomposition more generally applies to collision checking and collision

avoidance of pre-processed geometries within guaranteed real-time limits.

Appendix A

Technical Definitions and Proofs

A.1 Definition of the 3D Quadric Metric

We define a quadric metric Q as a function that maps a 3D coordinate x ∈ R3 to a

squared distance measure d2 ∈ R ≥ 0.

Q : x →→

xT 1


Q


x

1


(A.1)

This function can be represented well by a symmetric matrix Q, which we also refer

to as the quadric itself. By our definition, a 4-by-4 matrix Q is a quadric if it is

symmetric and

xT 1


Q


xT 1

T
is non-negative for all x. This notation almost

equivalent to that by Garland [80]—in more general mathematics terms, Q may be

regarded as a non-negative trivariate (or, ternary) quadratic function.

Our main intention to use quadrics is to approximate distances to geometric

shapes. In particular, we would like to combine quadrics representing the approxi-

mate distance to compounds of geometric shapes. It is therefore useful to define a

relation whether one quadric metric is greater or equal than another. Let ≽ define

a greater-or-equal relation between quadrics:

Q′ ≽ Q if and only if ∀x : Q′(x) ≥ Q(x) (A.2)

From these definitions, we can see that all symmetric, positive-semidefinite ma-

trices are quadrics, that the quadric error metric is closed under matrix addition,

and that ≽ is a partial order. (≽ is reflexive, antisymmetric, and transitive, but not

total.)

129

130 APPENDIX A. TECHNICAL DEFINITIONS AND PROOFS

A.1.1 Distances to Geometric Primitives

Quadric metrics can express the exact squared distance to the 3D geometric primi-

tives points, lines, and planes. We would like to note that our definition of quadric

metrics is different from the more generally used quadric surfaces or quadric sur-

faces in projective space [129, pp. 73ff.], in which Q(x) may be negative. While the

locus of zeros of those quadrics can define surfaces of more general shapes such as

cylinders and ellipsoids, they are not defined as non-negative and therefore cannot

be used as distance metrics to geometric shapes.

For our definition of quadric metrics, the squared distances to a point p, a line

(p, l) with a direction l and a plane (p,n) with a normal n are given as follows:

Qpoint(p) =


1 −p
−pT p2


(A.3)

Qline(p, l) = ATA with A = nullspace(l)T

1 −p


(A.4)

Qplane(p,n) = ATA with A = nT

1 −p


(A.5)

From these primitive shapes, quadric metrics for more complex, compound shapes

can be generated. The simplest way to define the quadric metric for an arbitrary

compound shape A ∪B is of course the addition.

QA∪B := QA +QB ≽ min(QA, QB) ≽ d2(A ∪B) (A.6)

Assuming that QA and QB are upper bounds of the squared distances to A and B,

we can construct an upper bound QA∪B for the squared distance to the compound

A ∪ B. This simple addition is however too coarse an estimate for distance queries

to geometric meshes (see Figure 4.4d); more refined alternatives are discussed in

Section 4.3.3.

A.1.2 Operations on Quadric Metrics

Before we derive a locally tight approximation to compound shapes distance by

quadrics, we first need to define a number of basic operations on quadric metrics

used in further discussion. For an in-depth discussion, more geometric properties of

quadric metrics are covered in a thesis by Garland [72, pp. 61ff.].

Transformation A quadric can be rotated and translated in 3D space. To apply

a transformation T ∈ SE(3) to a quadric Q, we can compute TTQT .

A.1. DEFINITION OF THE 3D QUADRIC METRIC 131

Minimum Since the functionQ is continuous and non-negative, it has a minimum.

The minimizer argmin(Q) is a linear subspace depending on the quadratic terms; it

is most often a minimizing point, but may be more generally a line, a plane, or the

whole 3D space. Since a minimizer m fulfills a derivative of zero in the quadratic

function of the quadric, it can be solved from the linear equation

Q1:3,1:3m+Q1:3,4 = 0 (A.7)

It should be noted that a quadric is often singular—an example would be the distance

to a plane Qplane, which has rank 1—therefore, solving Eq. A.7 requires numerically

stable algorithms such as singular value decomposition.

Factorization In our definition of quadrics, there exists a transformation T such

that a quadric Q becomes a non-negative diagonal matrix, which we name S. In

other words, Q can be factorized into TTS T . Geometrically, we can transform

the quadric metric such that its minimum is at the origin, and its value increases

quadratically along the unit axes. Surfaces of equal values (isosurfaces) of Q then

become, in general, axis-aligned ellipsoids. To perform this factorization, we first

extract a translation T trans to move the minimum to the origin. This translation is

given by

T trans =


1 − argmin(Q)

0T 1


, (A.8)

and leads to the intermediate factorization Q = TT
transA T trans to a quadric A that

has no linear term, i.e. AT
1:3,4 = A4,1:3 = 0. After that, we can perform a singular

value decomposition on the quadratic part of the origin-aligned quadric, factorizing

A1:3,1:3 = V TS1:3,1:3V . The transformation T for the whole factorization is then

given by

T =


V −V argmin(Q)

0T 1


(A.9)

From the normalized quadric S, we deduce some of its properties. The first three

diagonal entries of S are the inverted axis lengths of the unit value ellipsoid. If

one or more entries are zero, areas of equal values, or isosurfaces, degenerate to an

infinite elliptic cylinder or two infinite planes. The forth entry S4,4 is the constant

cost term of the quadric.

132 APPENDIX A. TECHNICAL DEFINITIONS AND PROOFS

A.2 Convexity Invariance of the Bounding Mesh Algo-

rithm

For a simplified cost function Etriangles that is a weighted sum of squared distances

to neighboring vertices (Eq. A.3), we can observe that the bounding mesh algorithm

preserves the convex property of shapes in non-degenerate cases. Given a convex

input mesh M , the bounding mesh algorithm (Section 4.2, Algorithm 2) will then

generate a convex bounding mesh M ′.

Sketch of Proof. It is sufficient to show the invariance of the convex property only

for a single edge contraction, because modifications to the mesh are only made

within the edge contraction step and the invariance is then preserved by induc-

tion. We assume that the cost function E(e,v) of all edges e is a weighted sum of

squared distances from v to points within the convex hull of the neighborhood P (e),

hull(P (e)). We may also assume that hull(P (e)) does not intersect triangles outside

of P (e). Because of the bounding mesh constraints, any constraint minimizer v of

E(e) is clearly outside of M . However, an unconstrained minimizer of E(e) is a

point v∗ within hull(P (e)). Therefore, at least one constraint must hold with equal-

ity for the constrained minimizer, let us name this plane constraint p. Also, let P̄ (e)

denote all triangle planes outside the neighborhood P (e). Now suppose the optimal

contraction point v would be outside of the simplex defined by P̄ (e). Note that all

intersection points of planes from P (e) are located within this simplex. v is therefore

not fully constrained and may move along a constraint subspace. From the convexity

of hull(P (e)), it could therefore be moved closer to the unconstrained minimizer v∗

and have lower costs. This contradicts our assumption that an optimal contraction

point outside the simplex of P̄ (e) could be generated. As a result, the contracted

mesh is convex. Note that cost functions are updated in a way that unconstrained

minima stay within hull(P (e)), so assumptions also hold for all subsequent edge

contractions.

Note that the above argument only applies to a cost function that is a sum of

squared distances to points within an edge neighborhood. If we choose a cost func-

tion that includes other terms, for instance squared distances to planes, convexity

is, in general, no longer preserved. It is then straightforward to construct a coun-

terexample where the projection onto p̄ would increase costs and a concave edge is

introduced, or to find concave edges in the real output of the software implementa-

tion.

A.3. CLOSED-FORM INVERSE KINEMATICS 133

A.3 Closed-form Inverse Kinematics

To provide more efficient constraint space sampling strategies in a number of the

scenarios discussed, we derived closed-form solutions for a range of manipulators

with five and six rotational axes. We use a variant of Denavit-Hartenberg parameters

defined by Khalil and Kleinfinger [130]. Note that an implementation of the following

closed-form solutions should check for cases where solution is not defined and the

pose is not reachable, such as arccos(x) with ∥x∥ > 1.

Inverse Position for Five Revolute Axes

Given is a kinematic chain of five rotational axes with arbitrary Denavit-Hartenberg

parameters d1, a2, a3, d5, fixed parameters α1 = −π/2, α3 = π/2, and all other

parameters set to zero. Since this kinematic chain does not cover SE(3) in general,

it is favorable to solve the inverse position θ for given tool center position x, pitch

β, and roll φ. A solution may then be obtained as follows.

θ0 = atan2(x1, x0)

t3 =


0 0 1

cos(θ0) sin(θ0) 0

 x0

x1

x2 − d1

− d5


cos(π/2− β)

sin(π/2− β)



θ1 = atan2(t3,1, t3,0) + arccos

a22 + t23 − a23


/ (2a2 ∥t3∥)


θ2 = π − arccos


a22 + a23 − x2

3


/(2a2a3)


θ3 = π − β − θ1 − θ2

θ4 = φ

Inverse Position for Six Revolute Axes

Given is a kinematic chain of six rotational axes with arbitrary Denavit-Hartenberg

parameters a1, a2, a3, d1, d3, d4, d6, fixed parameters α0 = −π/2, α2 = −π/2, α3 =

π/2, α4 = π/2, and all other parameters set to zero; θ is to be found for a given

end-effector pose (R,x). The following solution is a generalization of [131, p. 72ff.]

to allow a1 ̸= 0. Up to eight individual solutions may be obtained by choosing

different signs k0, k1, k2 ∈ {1,−1}.

t4 = x− d6R0:2,2

r =


t24,0 + t24,1 − d23

134 APPENDIX A. TECHNICAL DEFINITIONS AND PROOFS

θ0 = atan2(−k0rt4,1 − d3t4,0,−k0rt4,0 + d3t4,1)

s0 = cos(θ0)t4,0 + sin(θ0)t4,1 − a1

s1 = t4,2 − d1

u =


a23 + d24

v =


s20 + s21

θ1 = k0k1 arccos

(a22 + v2 − u2)/(2a2v)


− atan2(s1, s0)

θ2 = k0k1 arccos

(a22 + u2 − v2)/(2a2u)


− atan2(d4, a3)− π

e = cos(θ1 + θ2 + π)

f = sin(θ1 + θ2 + π)

θ3 = atan2

k2


− sin(θ0) cos(θ0) 0


R0:2,2, k2


cos(θ0)e sin(θ0)e −f


R0:2,2



θ4 = atan2


e cos(θ0) cos(θ3)− sin(θ0) sin(θ3)

e sin(θ0) cos(θ3) + cos(θ0) sin(θ3)

−f cos(θ3)


T

R0:2,2,

f cos(θ0)

f sin(θ0)

e


T

R0:2,2

+ π

θ5 = atan2


−e cos(θ0) sin(θ3)− sin(θ0) cos(θ3)

−e sin(θ0) sin(θ3) + cos(θ0) cos(θ3)

f sin(θ3)


T

R0:2,0,

−e cos(θ0) sin(θ3)− sin(θ0) cos(θ3)

−e sin(θ0) sin(θ3) + cos(θ0) cos(θ3)

f sin(θ3)


T

R0:2,1



Appendix B

Bounding Mesh Evaluation

135

136 APPENDIX B. BOUNDING MESH EVALUATION

B.1 Additional Bounding Mesh Examples

(a) Original mesh with
251,117 vertices

(b) Bounding mesh with
20,000 vertices

(c) Bounding mesh with
10,000 vertices

(d) Bounding mesh with
5,000 vertices

(e) Inner bounding mesh
with 20,000 vertices

(f) Inner bounding mesh
with 10,000 vertices

(g) Inner bounding mesh
with 5,000 vertices

Figure B.1: Several outer and inner bounding meshes of a Kuka robot

B.1. ADDITIONAL BOUNDING MESH EXAMPLES 137

(a) Original mesh with
241,190 vertices

(b) Bounding mesh with
20,000 vertices

(c) Bounding mesh with
10,000 vertices

(d) Bounding mesh with
5,000 vertices

(e) Inner bounding mesh
with 20,000 vertices

(f) Inner bounding mesh
with 10,000 vertices

(g) Inner bounding mesh
with 5,000 vertices

Figure B.2: Several outer and inner bounding meshes of a Comau robot.

138 APPENDIX B. BOUNDING MESH EVALUATION

B.2 Evaluation of Cost Functions for Bounding Mesh

Decimation

Table B.1: Comparison of cost functions for bounding mesh decimation.

C
os
t

fu
n
ct
io
n

E
p
la
n
e
s
,
p
la
n
e
d
is
ta
n
ce
s

A
d
a
p
te
d
E

p
la
n
e
s
,
p
la
n
e

d
is
ta
n
ce
s
w
it
h
a
d
a
p
ta
ti
o
n
o
f

th
e
co
n
st
a
n
t
te
rm

E
tr
ia
n
g
le
s
,
tr
ia
n
g
le

ce
n
te
r

d
is
ta
n
ce
s

N
u
m
b
er

of ve
rt
ic
es

n

D
is
ta
n
ce

fr
om

or
ig
in
al

to
ap

p
ro
x
im

at
io
n

[m
m
]

D
is
ta
n
ce

fr
om

ap
p
ro
x
im

at
io
n

to
or
ig
in
al

[m
m
]

D
is
ta
n
ce

fr
o
m

o
ri
g
in
a
l
to

a
p
p
ro
x
im

a
ti
o
n

[m
m
]

D
is
ta
n
ce

fr
o
m

a
p
p
ro
x
im

a
ti
o
n

to
o
ri
g
in
a
l

[m
m
]

D
is
ta
n
ce

fr
o
m

o
ri
g
in
a
l
to

a
p
p
ro
x
im

a
ti
o
n

[m
m
]

D
is
ta
n
ce

fr
o
m

a
p
p
ro
x
im

a
ti
o
n

to
o
ri
g
in
a
l

[m
m
]

m
ea
n

m
ax

m
ea
n

m
ax

m
ea
n

m
a
x

m
ea
n

m
a
x

m
ea
n

m
a
x

m
ea
n

m
a
x

M
it
su

b
is
h
i,
or
ig
in
al

tr
ia
n
gu

la
ti
on

,
b
ou

n
d
in
g
b
ox

d
ia
g
o
n
a
l:
1
2
3
9
.3
7
m
m

10
8
41
9

(F
ig
u
re

4.
7a
)

20
00
0

0
.0
16

0
.1
15

0.
00
5

0.
14
0

0
.0
8
2

1.
7
9
5

0
.2
6
2

3
.4
1
3

0.
0
3
3

0.
6
7
4

0.
0
6
1

1.
8
9
9

10
00
0

0
.0
53

1
.3
71

0.
02
1

0.
45
8

0
.2
2
2

3.
0
1
8

0
.5
8
0

6
.2
1
5

0.
0
9
7

1.
2
0
8

0.
1
5
4

2.
9
9
9

5
00
0

0
.1
39

1
.3
71

0.
07
1

1.
83
0

0
.5
4
6

5.
8
5
8

1
.2
3
9

9
.0
4
8

0.
2
2
0

2.
9
8
1

0.
3
2
9

6.
7
2
9

2
50
0

0
.3
70

3
.4
73

0.
20
2

4.
80
7

1
.2
8
4

1
2.
5
2
2

2
.5
9
5

2
0
.0
8
4

0.
5
2
3

4.
1
0
1

0.
6
3
2

7.
8
8
7

K
u
k
a
,
or
ig
in
al

tr
ia
n
gu

la
ti
on

,
b
ou

n
d
in
g
b
ox

d
ia
g
o
n
a
l:
3
4
4
3
.7
5
m
m

25
1
11
7

(F
ig
u
re

B
.1
)

20
00
0

0
.4
48

26
.2
17

0.
24
7

18
.1
50

0
.6
3
6

7.
6
8
5

0
.9
3
4

2
2
.8
7
1

0.
7
0
1

6.
8
3
4

0.
6
9
8

2
2.
5
1
3

10
00
0

1
.2
74

26
.2
17

0.
74
9

19
.4
20

2
.0
6
6

1
8.
0
7
0

2
.7
3
3

2
4
.9
2
0

1.
6
9
7

1
2.
6
2
8

1.
6
3
1

2
5.
2
5
8

5
00
0

3
.4
28

46
.4
41

2.
16
7

44
.7
52

4
.9
0
0

3
0.
0
0
4

5
.8
9
0

5
2
.7
2
7

3.
7
5
0

2
1.
5
4
1

3.
7
5
7

3
5.
5
2
4

2
50
0

9
.8
51

31
0
.2
75

5.
78
9

85
.1
62

1
0
.7
9
3

7
5.
6
4
0

1
2
.5
2
7

8
1
.2
3
5

9.
0
7
7

5
3.
1
0
3

8.
5
2
9

6
1.
6
8
9

C
o
m
a
u
,
or
ig
in
al

tr
ia
n
gu

la
ti
on

,
b
ou

n
d
in
g
b
ox

d
ia
g
o
n
a
l:
3
7
1
9
.0
8
m
m

24
1
19
0

(F
ig
u
re

B
.2
)

20
00
0

0
.1
55

2
.0
58

0.
11
5

3.
75
7

0
.3
3
5

6.
7
0
4

0
.9
8
4

1
8
.0
1
0

0.
1
5
8

3.
2
9
9

0.
3
6
3

1
2.
5
7
5

10
00
0

0
.7
23

6
.0
65

0.
63
7

16
.0
10

1
.3
2
0

1
5.
0
2
1

3
.2
2
3

4
3
.3
6
3

0.
7
1
8

9.
1
5
3

1.
3
1
8

4
0.
2
8
8

5
00
0

2
.0
96

23
.4
80

2.
18
0

43
.0
25

3
.6
7
2

2
3.
4
8
9

6
.5
4
7

4
9
.2
6
6

2.
0
6
0

1
6.
6
7
3

3.
1
1
5

4
4.
7
7
1

2
50
0

6
.1
43

78
.2
53

5.
42
7

50
.9
74

7
.9
0
9

4
2.
3
8
3

1
1
.0
5
3

7
0
.6
5
8

5.
3
8
4

3
9.
3
9
4

6.
4
6
6

5
9.
9
6
6

B.2. EVALUATION OF COST FUNCTIONS 139

10−4

10−3

10−2

10−1

100

102 103 104

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(a) Outer bounding meshes

10−4

10−3

10−2

10−1

100

102 103 104

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(b) Inner bounding meshes

Figure B.3: Hausdorff distance of a series of bounding meshes of the Stanford Bunny
with respect to cost functions. The Stanford Bunny is a 3D scanned model of 34,835
vertices, with a number of holes in its topology. Distances are given in relation to the
bounding box diagonal. Note the logarithmic axes.

140 APPENDIX B. BOUNDING MESH EVALUATION

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(a) Outer bounding meshes

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(b) Inner bounding meshes

Figure B.4: Hausdorff distance of a series of bounding meshes of the Dragon model with
respect to cost functions. The Dragon is a 3D scanned and reconstructed model of 437,645
vertices. Distances are given in relation to the bounding box diagonal. Note the logarithmic
axes.

B.2. EVALUATION OF COST FUNCTIONS 141

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(a) Outer bounding meshes

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(b) Inner bounding meshes

Figure B.5: Hausdorff distance of a series of bounding meshes of the Mitsubishi model
with respect to cost functions. The Mitsubishi model is a triangulated mesh of 108,419
vertices. Distances are given in relation to the bounding box diagonal. Note the logarithmic
axes.

142 APPENDIX B. BOUNDING MESH EVALUATION

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(a) Outer bounding meshes

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(b) Inner bounding meshes

Figure B.6: Hausdorff distance of a series of bounding meshes of the Kuka model with
respect to cost functions. The Kuka model is a triangulated mesh of 251,117 vertices with
many round details. Distances are given in relation to the bounding box diagonal. Note the
logarithmic axes.

B.2. EVALUATION OF COST FUNCTIONS 143

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(a) Outer bounding meshes

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ax

im
u
m

D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

M
ea
n
D
is
ta
n
ce

Vertices

Eplanes
Etriangles

adapted Eplanes
adapted Etriangles

(b) Inner bounding meshes

Figure B.7: Hausdorff distance of a series of bounding meshes of the Comau model with
respect to cost functions. The Comau model is a triangulated mesh of 241,190 vertices
with many details. Distances are given in relation to the bounding box diagonal. Note the
logarithmic axes.

Bibliography

[1] An Oxford Graduate, Observations on the Automaton Chess Player, J.

Hatchard, 1819.

[2] C. Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth, L. Bo, R. Chu, M. Kung,

L. LeGrand, J. R. Smith, D. Fox, Gambit: An autonomous chess-playing

robotic system, in: IEEE International Conference on Robotics and Automa-

tion (ICRA), 2011, pp. 4291–4297.

[3] F. Gravot, S. Cambon, R. Alami, aSyMov: A Planner That Deals with In-

tricate Symbolic and Geometric Problems, in: International Symposium on

Robotics Research (ISRR), 2003, pp. 100–110.

[4] S. Cambon, R. Alami, F. Gravot, A hybrid approach to intricate motion,

manipulation and task planning, International Journal of Robotics Research

(IJRR) 28 (1) (2009) 104–126.

[5] C. Dornhege, Task Planning for High-Level Robot Control, Dissertation,

Albert-Ludwigs-Universität Freiburg (2014).

[6] A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, A. Knoll, KVP: A

Knowledge of Volumes Approach to Robot Task Planning, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2013,

pp. 202–208.

[7] A. Gaschler, R. P. A. Petrick, T. Kröger, A. Knoll, O. Khatib, Robot Task

Planning with Contingencies for Run-time Sensing, in: IEEE International

Conference on Robotics and Automation (ICRA) Workshop on Combining

Task and Motion Planning, 2013.

[8] A. Gaschler, R. P. A. Petrick, T. Kröger, O. Khatib, A. Knoll, Robot Task

and Motion Planning with Sets of Convex Polyhedra, in: Robotics: Science

and Systems (RSS) Workshop on Combined Robot Motion Planning and AI

Planning for Practical Applications, 2013.

145

http://books.google.de/books?id=J7YUAAAAYAAJ
http://dx.doi.org/10.1109/ICRA.2011.5980528
http://dx.doi.org/10.1109/ICRA.2011.5980528
http://dx.doi.org/10.1007/11008941_11
http://dx.doi.org/10.1007/11008941_11
http://dx.doi.org/10.1177/0278364908097884
http://dx.doi.org/10.1177/0278364908097884
http://dx.doi.org/10.6094/UNIFR/10122
http://dx.doi.org/10.1109/IROS.2013.6696354
http://dx.doi.org/10.1109/IROS.2013.6696354
http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf

146 BIBLIOGRAPHY

[9] A. Gaschler, S. Nogina, R. P. A. Petrick, A. Knoll, Planning perception and

action for cognitive mobile manipulators, in: SPIE Volume 9025 – Intelligent

Robots and Computer Vision XXXI: Algorithms and Techniques, 2014.

[10] R. P. A. Petrick, A. Gaschler, Extending Knowledge-Level Contingent Plan-

ning to Robot Task Planning, in: International Conference on Automated

Planning and Scheduling (ICAPS) Workshop on Planning and Robotics (Plan-

Rob), 2014.

[11] A. Gaschler, I. Kessler, R. P. A. Petrick, A. Knoll, Extending the Knowl-

edge of Volumes Approach to Robot Task Planning with Efficient Geometric

Predicates, in: IEEE International Conference on Robotics and Automation

(ICRA), 2015, pp. 3061–3066.

[12] A. Gaschler, Q. Fischer, A. Knoll, The Bounding Mesh Algorithm, Tech. Rep.

TUM-I1522, Technische Universität München, Germany (June 2015).

[13] R. P. A. Petrick, A. Gaschler, Knowledge-level planning for robot task planning

and human-robot interaction, in: RSS Workshop on Combining AI Reasoning

and Cognitive Science with Robotics, 2015.

[14] N. Somani, A. Gaschler, M. Rickert, A. Perzylo, A. Knoll, Constraint-based

task programming with CAD semantics: From intuitive specification to real-

time control, in: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2015.

[15] S. Russell, P. Norvig, Artificial Intelligence, A modern approach, 3rd Edition,

Prentice-Hall, Pearson Education, 2010.

[16] N. J. Nilsson, A mobile automaton: An application of artificial intelligence

techniques, Tech. rep. (1969).

[17] R. E. Fikes, N. J. Nilsson, STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving, Artificial Intelligence 2 (1971) 189–208.

[18] T. Lozano-Pérez, J. L. Jones, E. Mazer, P. A. O’Donnell, Task-level planning

of pick-and-place robot motions, Computer 22 (3) (1989) 21–29.

[19] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, E. Mazer, Handey: a robot

task planner, MIT Press, 1992.

[20] L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars, Probabilistic roadmaps

for path planning in high-dimensional configuration spaces, IEEE Transactions

on Robotics and Automation 12 (4) (1996) 566–580.

http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://dx.doi.org/10.1109/ICRA.2015.7139619
http://mediatum.ub.tum.de/node?id=1255722
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=16222
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=16222
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/70.508439

BIBLIOGRAPHY 147

[21] S. M. LaValle, J. J. Kuffner, Randomized Kinodynamic Planning, Interna-

tional Journal of Robotics Research (IJRR) 20 (5) (2001) 378–400.

[22] C. Dornhege, M. Gissler, M. Teschner, B. Nebel, Integrating symbolic and

geometric planning for mobile manipulation, in: IEEE International Workshop

on Safety, Security & Rescue Robotics (SSRR), 2009, pp. 1–6.

[23] L. P. Kaelbling, T. Lozano-Pérez, Unifying Perception, Estimation and Action

for Mobile Manipulation via Belief Space Planning, in: IEEE International

Conference on Robotics and Automation (ICRA), 2012, pp. 2952–2959.

[24] M. Rickert, Efficient Motion Planning for Intuitive Task Execution in Modular

Manipulation Systems, Dissertation, Technische Universität München (2011).

[25] E. Plaku, G. D. Hager, Sampling-based motion planning with symbolic, ge-

ometric, and differential constraints, in: IEEE International Conference on

Robotics and Automation (ICRA), 2010, pp. 5002–5008.

[26] S. Srivastava, E. Fang, R. Lorenzo, R. Chitnis, S. Russell, P. Abbeel, Com-

bined Task and Motion Planning Through an Extensible Planner-Independent

Interface Layer, in: IEEE International Conference on Robotics and Automa-

tion (ICRA), 2014, pp. 639–646.

[27] L. P. Kaelbling, T. Lozano-Pérez, Integrated Task and Motion Planning in

Belief Space, International Journal of Robotics Research (IJRR) 32 (9–10)

(2013) 1194–1227.

[28] J. Barry, L. P. Kaelbling, T. Lozano-Pérez, A Hierarchical Approach to Manip-

ulation with Diverse Actions, in: IEEE International Conference on Robotics

and Automation (ICRA), 2013, pp. 1799–1806.

[29] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, B. Nebel, Seman-

tic Attachments for Domain-Independent Planning Systems, in: International

Conference on Automated Planning and Scheduling (ICAPS), 2009, pp. 114–

121.

[30] N. J. Nilsson, Shakey The Robot, Tech. Rep. 323, AI Center, SRI International

(Apr. 1984).

[31] L. P. Kaelbling, T. Lozano-Pérez, Integrated robot task and motion planning

in the now, Tech. Rep. MIT-CSAIL-TR-2012-018, MIT (2012).

http://dx.doi.org/10.1177/02783640122067453
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5424160
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5424160
http://dx.doi.org/10.1109/ICRA.2012.6225237
http://dx.doi.org/10.1109/ICRA.2012.6225237
http://mediatum.ub.tum.de/node?id=981979
http://mediatum.ub.tum.de/node?id=981979
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509563
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509563
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1109/ICRA.2013.6630814
http://dx.doi.org/10.1109/ICRA.2013.6630814
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1206
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1206
http://www.ai.sri.com/pubs/files/629.pdf
http://hdl.handle.net/1721.1/71521
http://hdl.handle.net/1721.1/71521

148 BIBLIOGRAPHY

[32] R. Dearden, C. Burbridge, An Approach for Efficient Planning of Robotic

Manipulation Tasks, in: International Conference on Automated Planning

and Scheduling (ICAPS), 2013.

[33] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, T. Uras, Combining high-

level causal reasoning with low-level geometric reasoning and motion planning

for robotic manipulation, in: IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 4575–4581.

[34] K. Hauser, V. Ng-Thow-Hing, Randomized multi-modal motion planning for a

humanoid robot manipulation task, International Journal of Robotics Research

(IJRR) 30 (6) (2011) 678–698.

[35] D. Leidner, A. Dietrich, F. Schmidt, C. Borst, A. Albu-Schäffer, Object-

Centered Hybrid Reasoning for Whole-Body Mobile Manipulation, in: IEEE

International Conference on Robotics and Automation (ICRA), 2014.

[36] J. Bidot, L. Karlsson, F. Lagriffoul, A. Saffiotti, Geometric Backtracking for

Combined Task and Path Planning in Robotic Systems, Artificial Intelligen-

ceIn press.

[37] J. Wolfe, B. Marthi, S. J. Russell, Combined task and motion planning for

mobile manipulation, in: International Conference on Automated Planning

and Scheduling (ICAPS), 2010, pp. 254–258.

[38] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, F. Schmidt,

Combining task and path planning for a humanoid two-arm robotic system, in:

ICAPS Workshop on Combining Task and Motion Planning for Real-World

Applications (TAMPRA), 2012.

[39] K. Z. Haigh, M. M. Veloso, Interleaving planning and robot execution for

asynchronous user requests, in: Autonomous agents, 1998, pp. 79–95.

[40] L. P. Kaelbling, T. Lozano-Pérez, Hierarchical task and motion planning in the

now, in: IEEE International Conference on Robotics and Automation (ICRA),

2011, pp. 1470–1477.

[41] C. Galindo, J.-A. Fernández-Madrigal, J. González, A. Saffiotti, Robot task

planning using semantic maps, Robotics and Autonomous Systems 56 (11)

(2008) 955–966.

http://www.cs.bham.ac.uk/~rwd/DISTRIBUTE/dearden-burbridge-icaps13.pdf
http://www.cs.bham.ac.uk/~rwd/DISTRIBUTE/dearden-burbridge-icaps13.pdf
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1177/0278364910386985
http://dx.doi.org/10.1177/0278364910386985
http://www.dlr.de/rmc/rm/Portaldata/52/Resources/images/institute/robotersysteme/rollin_justin/mobile_manipulation/leidner2014object.pdf
http://www.dlr.de/rmc/rm/Portaldata/52/Resources/images/institute/robotersysteme/rollin_justin/mobile_manipulation/leidner2014object.pdf
http://dx.doi.org/10.1016/j.artint.2015.03.005
http://dx.doi.org/10.1016/j.artint.2015.03.005
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1456
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1456
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-24401
http://dx.doi.org/10.1007/978-1-4615-5735-7_7
http://dx.doi.org/10.1007/978-1-4615-5735-7_7
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1016/j.robot.2008.08.007

BIBLIOGRAPHY 149

[42] R. Petrick, D. Kraft, N. Krüger, M. Steedman, Combining Cognitive Vision,

Knowledge-Level Planning with Sensing, and Execution Monitoring for Ef-

fective Robot Control, in: Workshop on Planning and Plan Execution for

Real-World Systems, 2009, pp. 58–65.

[43] J. G. Bellingham, K. Rajan, Robotics in remote and hostile environments,

Science 318 (5853) (2007) 1098–1102.

[44] C.-H. Cheng, M. Geisinger, H. Ruess, C. Buckl, A. Knoll, Game Solving for

Industrial Automation and Control, in: IEEE International Conference on

Robotics and Automation (ICRA), 2012, pp. 4367–4372.

[45] L. de Silva, A. Pandey, R. Alami, An interface for interleaved symbolic-

geometric planning and backtracking, in: IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2013, pp. 232–239.

[46] M. E. Foster, A. Gaschler, M. Giuliani, A. Isard, M. Pateraki, R. Petrick,

Two People Walk Into a Bar: Dynamic Multi-Party Social Interaction with a

Robot Agent, in: ACM International Conference on Multimodal Interaction

(ICMI), 2012.

[47] M. Giuliani, R. P. A. Petrick, M. E. Foster, A. Gaschler, A. Isard, M. Pater-

aki, M. Sigalas, Comparing Task-Based and Socially Intelligent Behaviour in

a Robot Bartender, in: ACM International Conference on Multimodal Inter-

action (ICMI), 2013.

[48] M. Levihn, L. P. Kaelbling, T. Lozano-Perez, M. Stilman, Foresight and recon-

sideration in hierarchical planning and execution, in: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2013, pp. 224–231.

[49] D. Hadfield-Menell, E. Groshev, R. Chitnis, P. Abbeel, Modular Task and

Motion Planning in Belief Space, in: IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2015, pp. 4991–4998.

[50] D. Leidner, C. Borst, Hybrid reasoning for mobile manipulation based on ob-

ject knowledge, in: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) Workshop on AI-based Robotics, 2013.

[51] O. Khatib, A unified approach for motion and force control of robot manip-

ulators: The operational space formulation, IEEE Journal of Robotics and

Automation 3 (1) (1987) 43–53.

http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://dx.doi.org/10.1126/science.1146230
http://dx.doi.org/10.1109/ICRA.2012.6224814
http://dx.doi.org/10.1109/ICRA.2012.6224814
http://dx.doi.org/10.1109/IROS.2013.6696358
http://dx.doi.org/10.1109/IROS.2013.6696358
http://dl.acm.org/citation.cfm?id=2388680
http://dl.acm.org/citation.cfm?id=2388680
http://dx.doi.org/10.1145/2522848.2522869
http://dx.doi.org/10.1145/2522848.2522869
http://dx.doi.org/10.1109/IROS.2013.6696357
http://dx.doi.org/10.1109/IROS.2013.6696357
http://dx.doi.org/10.1109/IROS.2015.7354079
http://dx.doi.org/10.1109/IROS.2015.7354079
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/JRA.1987.1087068

150 BIBLIOGRAPHY

[52] F. Lagriffoul, D. Dimitrov, A. Saffiotti, L. Karlsson, Constraint propagation

on interval bounds for dealing with geometric backtracking, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2012,

pp. 957–964.

[53] M. R. Dogar, S. S. Srinivasa, A planning framework for non-prehensile ma-

nipulation under clutter and uncertainty, Autonomous Robots 33 (3) (2012)

217–236.

[54] J. L. Barry, Manipulation with Diverse Actions, Ph.D. thesis, Massachusetts

Institute of Technology (2013).

[55] D. Halperin, J.-C. Latombe, R. H. Wilson, A general framework for assembly

planning: The motion space approach, Algorithmica 26 (3-4) (2000) 577–601.

[56] F. Gravot, S. Cambon, R. Alami, aSyMov: a planner that deals with intricate

symbolic and geometric problems, International Journal of Robotics Research

(IJRR) (2005) 100–110.

[57] S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

[58] J. Hoffmann, B. Nebel, The FF Planning System: Fast Plan Generation

Through Heuristic Search, Journal of Artificial Intelligence Research (JAIR)

14 (2001) 253–302.

[59] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,

Artificial intelligence 90 (1) (1997) 281–300.

[60] J. McCarthy, P. J. Hayes, Some philosophical problems from the standpoint

of artificial intelligence, Readings in artificial intelligence (1969) 431–450.

[61] R. Reiter, The frame problem in the situation calculus: A simple solution

(sometimes) and a completeness result for goal regression, Artificial intel-

ligence and mathematical theory of computation: papers in honor of John

McCarthy 27 (1991) 359–380.

[62] A. Ferrein, C. Fritz, G. Lakemeyer, Using golog for deliberation and team

coordination in robotic soccer, Künstliche Intelligenz (KI) 19 (1) (2005) 24.

[63] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,

D. Weld, D. Wilkins, PDDL – The Planning Domain Definition Language

(Ver. 1.2), Tech. Rep. CVC TR-98-003, Yale Center for Computational Vision

and Control (1998).

http://dx.doi.org/10.1109/IROS.2012.6385972
http://dx.doi.org/10.1109/IROS.2012.6385972
http://dx.doi.org/10.1007/s10514-012-9306-z
http://dx.doi.org/10.1007/s10514-012-9306-z
http://hdl.handle.net/1721.1/82342
http://dx.doi.org/10.1007/s004539910025
http://dx.doi.org/10.1007/s004539910025
http://dx.doi.org/10.1007/11008941_11
http://dx.doi.org/10.1007/11008941_11
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1016/S0004-3702(96)00047-1
http://ipc.informatik.uni-freiburg.de/PddlResources?action=AttachFile&do=get&target=mcdermott-et-al-tr-1998.pdf
http://ipc.informatik.uni-freiburg.de/PddlResources?action=AttachFile&do=get&target=mcdermott-et-al-tr-1998.pdf

BIBLIOGRAPHY 151

[64] M. Helmert, The Fast Downward Planning System, Journal of Artificial Intel-

ligence Research (JAIR) 26 (2006) 191–246.

[65] C. R. Garrett, T. Lozano-Pérez, L. P. Kaelbling, FFRob: An efficient heuristic

for task and motion planning, in: International Workshop on the Algorithmic

Foundations of Robotics (WAFR), 2014.

[66] S. Srivastava, L. Riano, S. Russell, P. Abbeel, Using classical planners for

tasks with continuous operators in robotics, in: International Conference on

Automated Planning and Scheduling (ICAPS) Workshop on Planning and

Robotics (PlanRob), 2013.

[67] D. Nau, Y. Cao, A. Lotem, H. Muñoz-Avila, SHOP: Simple hierarchical or-

dered planner, in: International joint conference on Artificial intelligence (IJ-

CAI), 1999, pp. 968–973.

[68] R. P. A. Petrick, F. Bacchus, A Knowledge-Based Approach to Planning with

Incomplete Information and Sensing, in: International Conference on Artificial

Intelligence Planning and Scheduling (AIPS), 2002, pp. 212–221.

[69] R. P. A. Petrick, F. Bacchus, Extending the knowledge-based approach to

planning with incomplete information and sensing, in: International Confer-

ence on Automated Planning and Scheduling (ICAPS), 2004, pp. 2–11.

[70] R. P. A. Petrick, A knowledge-level approach for effective acting, sensing, and

planning, Ph.D. thesis, University of Toronto (2006).

[71] R. Petrick, M. E. Foster, Planning for Social Interaction in a Robot Bartender

Domain, in: International Conference on Automated Planning and Scheduling

(ICAPS), 2013.

[72] M. Garland, Quadric-based polygonal surface simplification, Ph.D. thesis,

Georgia Institute of Technology (1999).

[73] C. Ericson, Real-time collision detection, CRC Press, 2005.

[74] D. P. Luebke, A developer’s survey of polygonal simplification algorithms,

Computer Graphics and Applications 21 (3) (2001) 24–35.

[75] D. P. Luebke, Level of Detail for 3D Graphics, Morgan Kaufmann, 2003.

[76] P. Cignoni, C. Montani, R. Scopigno, A comparison of mesh simplification

algorithms, Computers & Graphics 22 (1) (1998) 37–54.

http://dx.doi.org/10.1613/jair.1705
http://lis.csail.mit.edu/pubs/garrett-wafr14.pdf
http://lis.csail.mit.edu/pubs/garrett-wafr14.pdf
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7166
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7166
http://dl.acm.org/citation.cfm?id=1624357
http://dl.acm.org/citation.cfm?id=1624357
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1890
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1890
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6039
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6039
http://dx.doi.org/10.1109/38.920624
http://dl.acm.org/citation.cfm?id=863276
http://dx.doi.org/10.1016/S0097-8493(97)00082-4
http://dx.doi.org/10.1016/S0097-8493(97)00082-4

152 BIBLIOGRAPHY

[77] G. Bradshaw, C. O’Sullivan, Adaptive medial-axis approximation for sphere-

tree construction, ACM Transactions on Graphics (TOG) 23 (1) (2004) 1–26.

[78] G. Bradshaw, Bounding volume hierarchies for level-of-detail collision han-

dling, Ph.D. thesis, Trinity College Dublin (2002).

[79] S. A. Ehmann, M. C. Lin, Accurate and fast proximity queries between poly-

hedra using convex surface decomposition, in: Computer Graphics Forum,

Vol. 20, 2001, pp. 500–511.

[80] M. Garland, P. S. Heckbert, Surface simplification using quadric error met-

rics, in: ACM Conference on Computer graphics and interactive techniques

(SIGGRAPH), 1997, pp. 209–216.

[81] H. H. Hoppe, Progressive hulls, US Patent 6,587,104 (Jul. 1 2003).

[82] X. Gu, S. J. Gortler, H. Hoppe, L. McMillan, B. Brown, A. Stone, Silhouette

mapping, Tech. Rep. TR-1-99, Harvard University (1999).

[83] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, J. Snyder, Silhouette clipping,

in: ACM Conference on Computer graphics and interactive techniques (SIG-

GRAPH), 2000, pp. 327–334.

[84] N. Platis, T. Theoharis, Progressive hulls for intersection applications, in:

Computer Graphics Forum, Vol. 22, 2003, pp. 107–116.

[85] N. V. Platis, Tεχνικές πoλλαπλών αναλν́σεων στην απλoπoίηση

τριγωνικών και τετραεδρικών πλεγµάτων (Multiresolution techniques for

the simplification of triangular and tetrahedral meshes), Ph.D. thesis, Univer-

sity of Athens (2005).

[86] D. Cholt, Progressive Hulls: Application on Biomedical Data, in: Central

European Seminar on Computer Graphics for students, 2012.

[87] C. R. Ciesla, Development of a system for the reduction of 3d polygon meshes

in the field of robotics, Diplomarbeit, Technische Universität München (2007).

[88] A. Varshney, Hierarchical geometric approximations, Ph.D. thesis, University

of North Carolina at Chapel Hill (1994).

[89] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,

F. Brooks, W. Wright, Simplification envelopes, in: ACM Conference on Com-

puter graphics and interactive techniques (SIGGRAPH), 1996, pp. 119–128.

http://dx.doi.org/10.1145/966131.966132
http://dx.doi.org/10.1145/966131.966132
http://dx.doi.org/10.1111/1467-8659.00543
http://dx.doi.org/10.1111/1467-8659.00543
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/344779.344935
http://dx.doi.org/10.1111/1467-8659.00653
http://www.cescg.org/CESCG-2012/papers/Cholt-Progressive_Hulls_Application_on_Biomedical_Data.pdf
http://www.cs.unc.edu/techreports/94-050.pdf
http://dx.doi.org/10.1145/237170.237220

BIBLIOGRAPHY 153

[90] A. Guéziec, Surface simplification inside a tolerance volume, Tech. Rep. RC

20440, IBM T.J. Watson Research Center (1996).

[91] J.-M. Lien, N. M. Amato, Approximate convex decomposition of polygons, in:

Annual Symposium on Computational Geometry, 2004, pp. 17–26.

[92] K. Mamou, F. Ghorbel, A simple and efficient approach for 3D mesh approx-

imate convex decomposition, in: IEEE International Conference on Image

Processing (ICIP), 2009, pp. 3501–3504.

[93] B. Chazelle, D. P. Dobkin, N. Shouraboura, A. Tal, Strategies for polyhedral

surface decomposition: an experimental study, Computational Geometry 7 (5)

(1997) 327–342.

[94] J.-M. Lien, Approximate convex decomposition and its applications, Ph.D.

thesis, Texas A&M University (2006).

[95] S. Asafi, A. Goren, D. Cohen-Or, Weak Convex Decomposition by Lines-of-

sight, in: Computer Graphics Forum, Vol. 32, 2013, pp. 23–31.

[96] K. Mamou, V-HACD project, https://code.google.com/p/v-hacd/, ac-

cessed, Aug 2015.

[97] J. J. Kuffner, Jr., S. M. LaValle, RRT-Connect: An Efficient Approach to

Single-Query Path Planning, in: IEEE International Conference on Robotics

and Automation (ICRA), 2000, pp. 995–1001.

[98] R. Smith, et al., Open dynamics engine, http://www.ode.org/, accessed, Aug

2015.

[99] M. Rickert, A. Sieverling, O. Brock, Balancing Exploration and Exploitation

in Sampling-Based Motion Planning, IEEE Transactions on Robotics 30 (6)

(2014) 1305–1317.

[100] E. G. Gilbert, D. W. Johnson, S. S. Keerthi, A fast procedure for comput-

ing the distance between complex objects in three-dimensional space, IEEE

Journal of Robotics and Automation 4 (2) (1988) 193–203.

[101] P. G. Xavier, Implicit convex-hull distance of finite-screw-swept volumes, in:

IEEE International Conference on Robotics and Automation (ICRA), Vol. 1,

2002, pp. 847–854.

http://dx.doi.org/10.1145/997817.997823
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5414068
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5414068
http://dx.doi.org/10.1145/220279.220311
http://dx.doi.org/10.1145/220279.220311
http://dx.doi.org/10.1111/cgf.12169
http://dx.doi.org/10.1111/cgf.12169
https://code.google.com/p/v-hacd/
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://www.ode.org/
http://dx.doi.org/10.1109/TRO.2014.2340191
http://dx.doi.org/10.1109/TRO.2014.2340191
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013463

154 BIBLIOGRAPHY

[102] B. Baginski, Efficient dynamic collision detection using expanded geometry

models, in: IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vol. 3, 1997, pp. 1714–1720.

[103] J. Schulman, A. Lee, I. Awwal, H. Bradlow, P. Abbeel, Finding Locally Op-

timal, Collision-Free Trajectories with Sequential Convex Optimization, in:

Robotics: Science and Systems (RSS), 2013.

[104] D. Berenson, S. Srinivasa, J. Kuffner, Task Space Regions: A Framework for

Pose-Constrained Manipulation Planning, International Journal of Robotics

Research (IJRR) 30 (12) (2011) 1435–1460.

[105] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson, P. Tour-

nassoud, A. Lanusse, Handey: A robot system that recognizes, plans, and

manipulates, in: IEEE International Conference on Robotics and Automation

(ICRA), Vol. 4, 1987, pp. 843–849.

[106] R. Alami, T. Siméon, J.-P. Laumond, A geometrical approach to planning ma-

nipulation tasks. the case of discrete placements and grasps, in: International

Symposium on Robotics Research (ISRR), 1989.

[107] T. Siméon, J.-P. Laumond, J. Cortés, A. Sahbani, Manipulation planning with

probabilistic roadmaps, International Journal of Robotics Research (IJRR)

23 (7-8) (2004) 729–746.

[108] J. Barry, K. Hsiao, L. P. Kaelbling, T. Lozano-Pérez, Manipulation with Mul-

tiple Action Types, in: International Symposium on Experimental Robotics,

Vol. 88, 2012, pp. 531–545.

[109] R. Alami, J.-P. Laumond, T. Siméon, Two manipulation planning algorithms,

in: Workshop on Algorithmic Foundations of Robotics (WAFR), 1995, pp.

109–125.

[110] M. Stilman, J. J. Kuffner, Navigation among movable obstacles: Real-time rea-

soning in complex environments, International Journal of Humanoid Robotics

2 (04) (2005) 479–503.

[111] M. R. Dogar, S. S. Srinivasa, Push-grasping with dexterous hands: Mechanics

and a method, in: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2010, pp. 2123–2130.

[112] J. Rutgeerts, Constraint-based task specification and estimation for sensor-

based robot tasks in the presence of geometric uncertainty, Ph.D. thesis (2007).

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=656591
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=656591
http://www.roboticsproceedings.org/rss09/p31.pdf
http://www.roboticsproceedings.org/rss09/p31.pdf
http://dx.doi.org/10.1177/0278364910396389
http://dx.doi.org/10.1177/0278364910396389
http://dx.doi.org/10.1109/ROBOT.1987.1087847
http://dx.doi.org/10.1109/ROBOT.1987.1087847
http://dx.doi.org/10.1177/0278364904045471
http://dx.doi.org/10.1177/0278364904045471
http://dx.doi.org/10.1007/978-3-319-00065-7_36
http://dx.doi.org/10.1007/978-3-319-00065-7_36
http://dx.doi.org/10.1109/ICHR.2004.1442130
http://dx.doi.org/10.1109/ICHR.2004.1442130
http://dx.doi.org/10.1109/IROS.2010.5652970
http://dx.doi.org/10.1109/IROS.2010.5652970
http://hdl.handle.net/1979/871
http://hdl.handle.net/1979/871

BIBLIOGRAPHY 155

[113] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën,

K. Claes, H. Bruyninckx, Constraint-based task specification and estimation

for sensor-based robot systems in the presence of geometric uncertainty, In-

ternational Journal of Robotics Research (IJRR) 26 (5) (2007) 433–455.

[114] T. Lozano-Pérez, R. A. Brooks, An Approach to Automatic Robot Program-

ming, in: M. Pickett, J. Boyse (Eds.), Solid Modeling by Computers, Springer,

1984, pp. 293–328.

[115] A. Gaschler, M. Springer, M. Rickert, A. Knoll, Intuitive Robot Tasks with

Augmented Reality and Virtual Obstacles, in: IEEE International Conference

on Robotics and Automation (ICRA), 2014, pp. 6026–6031.

[116] A. Ambler, R. J. Popplestone, Inferring the positions of bodies from specified

spatial relationships, Artificial Intelligence 6 (2) (1975) 157–174.

[117] S. Jentzsch, A. Gaschler, O. Khatib, A. Knoll, MOPL: A multi-modal path

planner for generic manipulation tasks, in: IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2015.

[118] D. Berenson, S. S. Srinivasa, Probabilistically complete planning with end-

effector pose constraints, in: IEEE International Conference on Robotics and

Automation (ICRA), 2010, pp. 2724–2730.

[119] L. Sentis, O. Khatib, Task-oriented control of humanoid robots through pri-

oritization, in: IEEE International Conference on Humanoid Robots, 2004.

[120] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

A. Y. Ng, ROS: an open-source robot operating system, in: IEEE International

Conference on Robotics and Automation (ICRA) Workshop on Open Source

Software, Vol. 3, 2009, p. 5.

[121] E. Coumans, et al., Bullet physics library, http://bulletphysics.org/, ac-

cessed, Aug 2015.

[122] G. van den Bergen, et al., Solid collision detection library, http://www.

dtecta.com/, accessed, Aug 2015.

[123] J. Pan, S. Chitta, D. Manocha, FCL: A general purpose library for collision

and proximity queries, in: IEEE International Conference on Robotics and

Automation (ICRA), 2012, pp. 3859–3866.

http://dx.doi.org/10.1177/027836490707809107
http://dx.doi.org/10.1177/027836490707809107
http://dx.doi.org/10.1007/978-1-4613-2811-7_14
http://dx.doi.org/10.1007/978-1-4613-2811-7_14
http://dx.doi.org/10.1109/ICRA.2014.6907747
http://dx.doi.org/10.1109/ICRA.2014.6907747
http://dx.doi.org/10.1016/0004-3702(75)90007-7
http://dx.doi.org/10.1016/0004-3702(75)90007-7
http://dx.doi.org/10.1109/ROBOT.2010.5509694
http://dx.doi.org/10.1109/ROBOT.2010.5509694
http://bulletphysics.org/
http://www.dtecta.com/
http://www.dtecta.com/
http://dx.doi.org/10.1109/ICRA.2012.6225337
http://dx.doi.org/10.1109/ICRA.2012.6225337

156 BIBLIOGRAPHY

[124] G. van den Bergen, Collision Detection in Interactive 3D Environments, CRC

Press, 2003.

[125] S. Nogina, Task planning for a mobile manipulation scenario, Master’s thesis,

Technische Universität München (2013).

[126] G. J. Sussman, A computational model of skill acquisition, Ph.D. thesis, MIT

(1973).

[127] A. Perzylo, N. Somani, S. Profanter, M. Rickert, A. Knoll, Toward effi-

cient robot teach-in and semantic process descriptions for small lot sizes, in:

Robotics: Science and Systems (RSS) Workshop on Combining AI Reasoning

and Cognitive Science with Robotics, Rome, Italy, 2015.

[128] SMErobotics Demonstration D1, http://www.smerobotics.org/

demonstrations/d1.html, accessed, Aug 2015.

[129] R. Hartley, A. Zisserman, Multiple view geometry in computer vision, Cam-

bridge University Press, 2003.

[130] W. Khalil, J. Kleinfinger, A new geometric notation for open and closed-

loop robots, in: IEEE International Conference on Robotics and Automation

(ICRA), Vol. 3, 1986, pp. 1174–1179.

[131] H.-J. Siegert, S. Bocionek, Robotik: Programmierung intelligenter Roboter,

Springer, 1996.

http://dspace.mit.edu/bitstream/handle/1721.1/6894/AITR-297.pdf?sequence=2
http://www.smerobotics.org/demonstrations/d1.html
http://www.smerobotics.org/demonstrations/d1.html
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1109/ROBOT.1986.1087552
http://dx.doi.org/10.1109/ROBOT.1986.1087552
http://dx.doi.org/10.1007/978-3-642-80067-2

	Introduction
	Integrated Task and Motion Planning
	Scope of this Work
	Applications
	Contribution
	Structure

	Related Work
	Background
	Related Work in Task and Motion Planning
	Task and Motion Planning Systems

	Integrated Task and Motion Planning
	Problem Definition
	Related Work in Symbolic Planning
	Approach to Integrated Task and Motion Planning
	Planning with Knowledge and Sensing
	Interface to Robotics-specific Functions
	Force Sensing Scenario
	Conclusion

	Bounding Meshes for Efficient Geometric Predicates
	Bounded Geometric Predicates
	Bounding Meshes
	Level-of-Detail Models
	Single-Sided Mesh Approximation

	Bounding Mesh Generation
	Bounding Mesh Edge Contraction
	Quadric Error Metric
	Quadric Cost for Compound Shapes
	Optimal Edge Contraction
	Bounding Mesh Algorithm

	Bounding Sets of Convex Polyhedra
	Algorithms for Convex Decomposition
	Bounding Convex Decomposition
	Evaluation

	Bounding Swept Volumes

	Sampling with Geometric Constraints
	Related Work
	Geometric Constraint Formulation
	Constrained Sampling Problem
	Design of Geometric Cost Functions
	Completeness of Constrained Sampling
	Evaluation of the Sampling Algorithm

	Implementation and Evaluation
	System Implementation
	Geometric Pre-processing
	Components for Planning and Symbolic–Geometric Mapping
	Run-time Components

	System Evaluation
	Bimanual Pick-and-Place Scenarios
	Stacked n Objects Scenario
	Bimanual Assembly Scenario
	Conclusion

	Conclusion
	Contribution
	Future Work
	Further Applications

	Technical Definitions and Proofs
	Definition of the 3D Quadric Metric
	Distances to Geometric Primitives
	Operations on Quadric Metrics

	Convexity Invariance of the Bounding Mesh Algorithm
	Closed-form Inverse Kinematics

	Bounding Mesh Evaluation
	Additional Bounding Mesh Examples
	Evaluation of Cost Functions for Bounding Mesh Decimation

	Bibliography

