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Abstract—In this paper we present results from a user
evaluation of a robot bartender system which handles state
uncertainty derived from speech input by using belief tracking
and generating appropriate clarification questions. We present a
combination of state estimation and action selection components
in which state uncertainty is tracked and exploited, and
compare it to a baseline version that uses standard speech
recognition confidence score thresholds instead of belief track-
ing. The results suggest that users are served fewer incorrect
drinks when the uncertainty is retained in the state.

1. INTRODUCTION

Interactive multimodal systems typically consist of com-
ponents for input processing, state management, action se-
lection and behaviour realisation. In order for such a system
to operate robustly in the face of uncertain observations, it is
important to explicitly represent the resulting uncertainty in
the state and to exploit this in the action selection process.
A system that uses only the most likely input hypothesis in
maintaining the state is likely to select actions on the basis
of incorrect information, and therefore to display undesirable
or even unacceptable behaviour. A simple approach for
handling uncertain data is to introduce confidence thresholds
on the input hypotheses, resulting in system behaviour that
can be either too passive (when using high thresholds for
accepting an input hypothesis) or too fraught with errors
(in the case of lower thresholds). We argue that by taking
into account multiple input hypotheses and their confidence
scores, the system can make better informed decisions,
and—especially when including additional actions aimed at
reducing uncertainty—the system will be more robust to
uncertain input.

In this paper we present an extended version of the JAMES
robot bartender system (see Figure 1), in which the state
manager maintains multiple state hypotheses with confidence
scores, based on the input hypotheses and their confidence
scores provided by the vision and speech processing compo-
nents. The action selection component is extended with rules
that take into account this explicitly represented uncertainty.
We have carried out a user study to compare the behaviour
of the baseline system that does not handle uncertainty but
uses thresholds for accepting input hypotheses or not, to the
extended system which does handle uncertainty.
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Fig. 1.

Two users interacting with the robot bartender

II. ROBOT BARTENDER SYSTEM

Figure 2 shows the architecture of our robot bartender
system. The Visual Processing component tracks the location
and body orientation of multiple customers in the scene,
using two calibrated stereo cameras and a Kinect depth
sensor. Speech processing consists of speech recognition
using the Kinect ASR system and semantic parsing using
OpenCCG. The State Manager fuses the audiovisual input
stream and maintains a model of the social state; details
are presented in Section IV. The Social Skills Executor then
selects response actions given social state updates provided
by the State Manager, as outlined in Section V. The selected
action are then realised via the Output Planner, which sends
instructions to the Talking Head Controller (e.g., looking at a
particular customer, nodding, and/or speaking) and the Robot
Motion Planner. The Robot Motion Planner provides a high-
level interface to the physical process of serving of a drink
to a customer, along with functions such as idle motions and
picking up bottles from arbitrary locations.

III. SpeecH AND LANGUAGE PROCESSING

For speech recognition, we make use of the Microsoft
Kinect for Windows API which produces a series of inter-
mediate hypotheses while recognition is active, and a final n-
best list of recognition hypotheses when the end of speech is
detected. Each hypothesis has an estimated confidence score,
along with an estimate of the sound source angle and the
angle confidence. An application-specific speech recognition
grammar is used to constrain the recognition process in
order to achieve more reliable results and to ensure that the
hypotheses can be processed by the parser.
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JAMES system architecture

Once the user speech has been recognised, it must be
further processed to extract the underlying meaning. To do
this, we parse each hypothesis using a grammar defined in
OpenCCG [1], in an attempt to find a full parse. If no full
parse is found, we process all substrings of the recognised
string, and store the parse of the longest fragment along with
its confidence. Finally, after removing any duplicate parses
from the list, we convert each parse into a parameterised
communicative act, whose types include greeting, thanks,
and drink order requests. This list of possible communicative
acts is passed to the State Monitoring module along with
the original speech recognition string, the fragment string
if appropriate, the Kinect confidence score, and the sound
source angle and confidence.

IV. StaTE MONITORING WITH UNCERTAIN INPUT

In our robot bartender system, the task of the state
manager is to keep track of the social state, which contains
information about the customers in the scene: for example,
whether they are currently seeking attention from the bar-
tender, and whether they have been served their desired drink.
This decision is based on the continuous stream of messages
produced by the low-level input and output components.
We store all of the low-level information, and also infer
additional relations not directly reported by the sensors:
for example, we fuse information from vision and speech
to determine which user should be assigned a recognised
speech hypothesis, and use the vision data to estimate each
customer’s attention-seeking state [2].

The input provided by the vision and speech processing
components is noisy and uncertain: in particular, all signals
from the speech recogniser and the vision system include an
associated confidence value that indicates the estimated reli-
ability of the observation. Also, as noted above, the speech
recogniser may in some cases provide multiple alternative
hypotheses, each with its own associated confidence value.
However, the initial state representation [3] stored only the
most likely overall hypothesis, with no information about
the associated confidence. This simplified the initial action-
selection task considerably, but also discarded potentially
valuable sensor information.
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We have therefore extended the initial version of the
state manager to associate each state hypothesis with a
confidence score, and to include alternative hypotheses about
a customer’s drink order. Incorporating multiple hypotheses
and confidence scores into the state requires additional
processing in the state manager. The JAMES computer vision
system [4] estimates the location, gaze behaviour, and body
language of all people in the scene in real time, along with
an estimated confidence for each feature; these confidence
values are incorporated into the state, and are also used
to determine the confidence for derived properties such as
attention-seeking. For speech, we use the source angle from
the speech recogniser together with the location information
from vision to associate the communicative acts with a
customer. If the communicative act has to do with ordering a
drink, we also update our estimate of the customer’s desired
drink using the generic belief tracking procedure proposed
by [5], which maintains beliefs over user goals based on
a small number of domain-independent rules, using basic
probability operations: for example, if the customer repeats
a request for a Coke, the state-manager confidence for that
order will increase, even if the ASR confidence is low
for each individual utterance. This allows us to maintain a
dynamically-updated list of the possible drink orders made
by each customer in the scene, with an associated confidence
value for each order. The full details of the updated state
manager are given in [6].

V. ACTION SELECTION UNDER UNCERTAINTY

The task of the social skills executor (SSE) is to decide
what action the robot should take next, based on an update
of the social state provided by the state manager. In order to
exploit the uncertainty information incorporated in the new
social state representation, the action selection strategy has
been extended to include actions for clarifying the customers’
drink orders and rules for when to issue such clarifications.

The decision making process of the SSE consists of two
main stages. In the first stage, the SSE decides which of
the customers in the scene to focus on in its next action:
in particular, it decides whether to engage with a customer
seeking attention, whether to politely ask them to wait, or
whether to continue its ongoing interaction with them. In
case an ongoing interaction is to be continued, the system
decides in the second stage which communicative action will
be carried out, and whether a drink will be served to the
customer. Possible communicative actions include asking the
customer for their order (e.g., “What can I get you?”, “What
would you like to drink?”), acknowledging an order (e.g.,
”Okay, a coke”), serving an order (e.g., “There you go”,
“Here is your coke”), addressing social conventions (e.g.,
greetings, “You're welcome” after a customer thanks the
system), and clarifications (e.g., “Did you say coke?”, “Did
you say blue lemonade or green lemonade?”).

Since initial tests with the audiovisual input processing
system showed that the most important source of uncer-
tainty is in the speech input, the additional clarification
actions are focused on reducing this form of uncertainty.



In particular, the second stage of the decision making pro-
cess of continuing an ongoing interaction with a particular
customer has been extended with rules for taking such
actions, as shown in Algorithm 1, which uses the empirically-
determined thresholds shown in Table I. The criteria for
selecting clarifications depend on both the confidence of
the top drink order hypothesis and the entropy of the drink
order distribution, provided the state manager. The system
trusts the top hypothesis if the confidence is either above
an upper threshold, or above a lower threshold, combined
with a sufficiently low entropy (as a measure of uncertainty
about the drink order); a clarification question is generated
when these criteria are not met. Note that we also employ
a separate minimum confidence threshold on the speech
recognition, depending on whether uncertainty processing is
enabled (ScoNF_THR and SCONF_THR_UNC in Table I).

Algorithm 1 Selecting clarification actions (conf refers to
the confidence score of the top drink order hypothesis, entr
refers to the entropy of the drink order belief distribution, and
the thresholds used in the experiment are listed in Table 1.)

if ( conf > conF_THR] ) or
( conf > conr_THR2 and entr < ENTR_THR ) then
select action based on top hypothesis;
(e.g., “Okay, a coke”)
else if there is only one drink order hypothesis then
confirm the drink order with the user;
(e.g., “Did you say ‘coke’?”)
else
let user choose between top 2 hypotheses;
(e.g., “Did you say ‘green’ or ‘blue’ lemonade?”)

end if
TABLE I
THRESHOLDS USED IN SELECTING CLARIFICATIONS
Description Threshold Value
Upper confidence threshold CONF_THR | 0.65
Lower confidence threshold CONF_THR2 0.40
Entropy threshold ENTR_THR 0.25
parsing confidence threshold (baseline) SCONF_THR 0.30
parsing confidence threshold (uncertainty)  scoNF_THR-UNC  0.10

Figure 3 shows an interaction with the uncertainty-aware
system from our user studyin which the system successfully
clarifies a user order. Figure 4 shows an example interaction
with the baseline (uncertainty-unaware) system in which the
system misrecognizes the customer’s order and serves the
wrong drink without confirming the order first.

VI. User EvALuATION

To assess the impact of the revised action-selection process
described above, we carried out a user evaluation. The exper-
iment was similar to that described in [7]: each participant
carried out four short drink-ordering transactions with the
robot bartender together with a second customer played by
a confederate. For comparison, we used the previous version

1) Customer (Al) enters the scene, seeking attention
2) System (looking at Al): “Hello”

3) Al orders

4) parser: drink-order(green-lemonade) [0.02]

5) state: speech input rejected

6) Customer (A2) enters the scene, not seeking attention
7) System (to Al): “What can I get you?”
8) Al answers

9) parser: drink-order(blue-lemonade) [0.05]
10) state: speech input rejected
11) System (to Al): “What can I get you?”
12) Al answers
13) parser: drink-order(lemonade) [0.75]
14) state: drink-order(A 1)=(blue-lemonade [0.37],
green-lemonade [0.37])
15) System (to Al): “Did you say ‘blue lemonade’ or
‘green lemonade’?”
16) Al answers
17) parser: drink-order(lemonade) [0.53],
drink-order(blue-lemonade) [0.53]
18) state: drink-order(A1l)=(blue-lemonade [0.57],
green-lemonade [0.43])
19) System (to Al): “Did you say ‘blue lemonade’ or
‘green lemonade’?”
20) Al answers
21) parser: drink-order(blue-lemonade) [0.69]
22) state: drink-order(Al)=(blue-lemonade [0.66],
green-lemonade [0.34])
23) System (to Al): “Okay, a blue lemonade”
24) System serves blue lemonade to Al

Fig. 3. Interaction fragment where a user successfully orders blue lemonade

of the action-selection system as a baseline [7]; this version
used only the top state hypothesis and did not consider any
confidence values. Half of the sessions used the uncertainty-
aware system, while the other half used the baseline system;
also, to cover a range of scenarios, in half of the sessions,
the participant and the confederate each ordered their own
drinks, while in the other half, the participant also ordered on
behalf of the confederate. We gathered a range of objective
measures from the system log files, as well as subjective
measures from an online questionnaire.

A. Participants

24 participants (21 male), drawn from university depart-
ments outside the robotics group involved in developing the
bartender, took part in this experiment. The mean participant
age was 27.5 (range 21-49), and their mean self-rating of
experience with human-robot interaction systems was 3.3 on
a scale of 1-7. Seven of the participants had taken part in
a previous robot bartender evaluation, while 17 had not. All
participants were native or fluent speakers of German.

B. Procedure

Before the experiment, we told participants that their
task would be to order a drink from the robot bartender.
They were shown the physical form of the robot, but not
its interactive behaviour, and were then asked to rate their
expectations using a computer-based questionnaire. After
they had filled out the questionnaire, we told the participants
that they should approach the robot together with another
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Two customers enter the scene

one of them (Al) approaches the bar
System (to Al): “Hello”

Al returns greeting
System (to Al): “What can I get you?”

Al tries to order a blue lemonade
parser: drink-order(coke) [0.332]
state: drink-order(Al)=(coke [1.0])
System (to Al): “Okay, a coke”

system serves Al a coke
System (to Al): “Here you go”

Al tries to order again but ASR fails
System (to Al): “Anything else?”

Al tries to order again but speaker identification fails
System (to Al): “Will that be all?”

Al responds negatively
System (to Al): “What can I get you?”

Al once again orders a blue lemonade
parser: drink-order(blue-lemonade) [0.414]
state: drink-order(A1)=(blue-lemonade [1.0])
System: “Okay, a blue lemonade”

system serves Al a blue lemonade

Al thanks the system and leaves

14)
15)
16)
17)
18)
19)
20)
21)
22)

Fig. 4. Interaction in which the system serves the wrong drink

customer (a confederate). In half of the cases, the confederate
approached the bartender with the participant, while in the
other half, the confederate remained in the background while
the participant ordered on his behalf. Each participant took
part in four trials; after each trial, the participant completed
another computer-based questionnaire.

C. Independent measures

We manipulated two factors during this study: we varied
the use of uncertainty in the system, and also varied whether
the confederate ordered for himself or asked the participant
to order on his behalf. In a within-subjects design, all partici-
pants interacted with the bartender in all four configurations,
each in an individually counterbalanced order.

D. Dependent measures

We gathered two classes of dependent measures: objective
measures based on the system logs, and subjective measures
derived from the pre- and post-experiment questionnaires.

1) Objective measures: The objective measures were
based on the dimensions proposed by the PARADISE dia-
logue evaluation framework [8]. Task success was assessed
by counting how many drinks were served by the system
(maximum 2); dialogue quality was measured by counting
how many of the user’s attempted contributions fell below the
speech-recognition confidence threshold, how many times
the robot had to ask for a customer’s drink order, and—for
the system that used uncertainty—how many times it used a
clarification; while for dialogue efficiency, we computed the
time taken to serve the first drink in a trial, the time taken
to serve all of the drinks, as well as the total duration of the
trial as measured both in seconds and in system turns.
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2) Subjective measures: Before the experiment, the par-
ticipants completed the short subjective questionnaire shown
in Figure 5, which is based on the Godspeed questionnaire
series [9], a standard user measurement tool for human-robot
interaction. On the pre-test, the questions were framed to ask
for the users’ expectations rather than impressions. After
each trial, the participant again completed the Godspeed-
based questionnaire, as well as a short questionnaire designed
to measure their perceived success and overall impression of
the trial (Figure 6). Note that the questions were posed in
German; the figures show English translations.

Please rate your impression of the robot:

1. Machinelike 1 2 3 4 5 6 7 Humanlike

2 Unkind 1 2 3 4 5 6 7 Kind

3. Unintelligent 1 2 3 4 5 6 7 Intelligent

4 Artificial 1 2 3 4 5 6 7 Lifelike

5. Unpleasant 1 2 3 4 5 6 7 Pleasant

6. Inert 1 2 3 4 5 6 7 Interactive

7 Dislike 1 2 3 4 5 6 7 Like

8 Unfriendly 1 2 3 4 5 6 7 Friendly

9. Incompetent 1 2 3 4 5 6 7 Competent
Fig. 5. Godspeed questionnaire [9] subset used for evaluation

Ql:
Q2:
Q3:

What drinks did you order? [2 drinks; coke, green lemon-
ade, or blue lemonade]

What drinks did you get? [drinks of type coke, green
lemonade, or blue lemonade]

What was your overall impression of this interaction? [1-
6 Likert scale]

Fig. 6. Questionnaire for each session.

E. Results

Except where specifically noted below, none of the demo-
graphic features of the participants had any significant impact
on the results; also, whether the participant ordered for the
confederate did not make any significant difference. In this
analysis, we therefore concentrate primarily on the effect of
varying the action-selection strategy.

The objective results are summarised in Table II, showing
the mean results on each measure from the two conditions;
the final column shows the significance level from a paired
Mann-Whitney test comparing the results from the two
versions. Note that the baseline used the same acceptance
threshold as in the previous study [7], while the uncertainty-
aware version used a lower threshold, as it has a better
process for dealing with low-confidence utterances—see
Table I, where the thresholds are indicated as scoNrF_THR and
SCONF_THR respectively. It is therefore not surprising that the
baseline version had significantly more user turns discarded
due to low ASR confidence. Also, the baseline version never
selected choices or confirmations in its output, while—as
shown in the table—the uncertainty-aware system generally
clarified several times in each trial. This means that the
significant difference in system turns is also as expected. The
other differences between the systems are more interesting:



TABLE I

OBJECTIVE RESULTS

Measure Baseline (sd)  Uncertainty (sd) M-W
Drinks served 1.96 (0.14) 1.72 (0.39) p<0.01
Low ASR turns 3.2 (1.5) 2.0 (0.84) p<0.001
Order requests 5.7 (2.6) 5.5 (2.6) n.s.
Choices — 2.3 (2.3) —
Confirmations — 2.3 (2.0) —
Time to first drink 49.6 (19.6) 71.3 (58.7) p <0.05
Time to last drink 94.2 (24.1) 107.7 (61.2) n.s.
Duration 103.6 (25.3) 122.9 (61.2) n.s.
System turns 14.1 (3.6) 17.6 (5.0) p <0.05

the baseline system served significantly more drinks in a trial
(out of a maximum of two), and also served the first drink
significantly more quickly. These two results are likely to be
related: while the baseline version would immediately act on
any recognised drink-order hypotheses (as in Figure 4), the
uncertainty-enabled version would make an effort to confirm
or clarify any uncertain hypotheses before proceeding (Fig-
ure 3); and in some cases, due to input-processing issues, it
never achieved sufficient confidence to serve all drinks.

The results on the Godspeed questions are summarised
in Table III. We have divided the questions into the high-
level Godspeed categories they were drawn from: Anthro-
pomorphism (questions 1 and 4), Animacy (question 6),
Liking (questions 2, 5, 7, and 8), and Perceived Intelligence
(questions 3 and 9). For each category, on both the pre-
test and the post-test, we first computed Cronbach’s alpha
to test the internal consistency, and then computed the mean
response on that category. The experimental manipulation
had no significant effect on any of these questions, so
Table III simply shows the aggregate responses from the pre-
test and from all of the post-tests. As shown, the consistency
was generally quite high for all categories (a > 0.7), on
both pre-test and post-test. The responses on all categories
generally decreased from the pre-test to the post-test, with
the biggest decrease on the Perceived Intelligence category.
This is similar to the score decrease observed on a previous
study which also used the Godspeed series as a pre-test [10].
To see whether this pattern was affected by the participants’
experience either with HRI systems in general, or with
previous versions of the JAMES bartender specifically, we
carried out a multiple regression analysis. The only signifi-
cant effect was that the Anthropomorphism decrease was less
for participants with more HRI experience (R? = 0.27,p <
0.01). In general, this suggests that people’s expectations
of a robot’s interactive capabilities tend to outstrip their
actual experience of interacting with it, even when they have
previous experience with the same robot.

The results from the additional subjective questionnaire
are summarised in Table IV. The top two rows indicate
the perceived precision and recall; that is, the proportion
of the served drinks that were reported as correct, and
how many of the requested drinks were actually be served.
Despite the difference in drinks served between the two
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TABLE III

SUMMARY OF RESPONSES TO GODSPEED QUESTIONNAIRE

Pre-test _ Post-test

Category a  Mean (sd) a  Mean (sd)

Anthropomorphism  0.77 3.0 (1.1) 0.85 2.6 (1.3)

Animacy - 3.6 (1.7) - 3.2 (1.5)

Liking 0.82 53 (1.1) 091 4.8 (1.2)

Intelligence 0.90 45 (1.5) 0.85 3.7 (1.4)
TABLE IV

SUMMARY OF RESULTS TO SESSION QUESTIONNAIRE

Measure Baseline (sd)  Uncertainty (sd) M-W
Perceived precision 0.92 (0.26) 0.97 (0.17) n.s.
Perceived recall 0.90 (0.21) 0.81 (0.33) n.s.
Overall impression 4.4 (1.0) 37(1.2) p<001

systems (Table II), there was no significant difference found
on these measures; however, note that the precision was
somewhat higher for the system with uncertainty enabled,
while the recall was higher for the baseline system. Also,
the perceived recall was mildly correlated with the number
of drinks served (R? = 0.25, p < 0.0001), while there was
no correlation between the number of drinks served and the
perceived precision. The bottom row of the table summarises
the responses to the final question assessing overall satis-
faction with the interaction; and here, the responses for the
baseline system were significantly higher than those for the
uncertainty-enhanced version.

To test what aspects of the uncertainty-enhanced system
affected the users’ overall impression of the interaction, we
carried out a stepwise multiple linear regression analysis
on the subjective results as suggested by the PARADISE
procedure [8]. The resulting regression equation is as follows
(where N indicates the Z score normalisation function):

Overall 4.04 — 3.1- N(LastDrinkTime)

+ 3.04- N(Duration) + 0.91 - N(NumDrinks)
— 0.49- N(Choices) — 0.36- N(AskOrder)

In other words, participants’ overall subjective scores were
higher when the interaction was longer and when more drinks
were served, and were lower when the robot took longer to
serve all drinks, when it asked more either-or questions, and
when it had to repeatedly ask for a drink order. The R? value
for this equation is 0.235, indicating that it explains about a
quarter of the variance in the overall scores. For comparison,
the PARADISE analysis on the previous study found that the
main contributors to overall satisfaction were the number of
drinks served, the system response time, and the number of
turns discarded due to low ASR, with a similar R? value [7].

F. Discussion

Overall, the results indicate that the baseline system was
somewhat faster at serving drinks and also served more of
them—however, the responses to the session questionnaire
suggest that just because it served a larger number of drinks,
that does not mean that it served more correct drinks. Indeed,
the additional clarifications made possible by the enhanced



state representation can help to avoid serving incorrect
drinks. For example, the interaction fragment in Figure 3
demonstrates how the uncertainty-aware system avoids serv-
ing the wrong drink by taking into account uncertainty about
a customer’s order and asking clarification questions. In this
same fragment, the baseline system hand would have served
the wrong drink with probability 0.5: in line 14, the state
contains two order hypotheses, both with confidence 0.37.
Since both hypotheses exceed the 0.3 threshold used by the
baseline system, it would choose randomly between the two
hypotheses, a blue or a green lemonade; whereas in fact, the
customer ordered a blue lemonade.

More generally, in cases where the top drink order hy-
pothesis exceeds the 0.3 threshold but is incorrect, the
baseline system would fail, whereas the uncertainty-aware
system can recover from the misunderstanding. Furthermore,
if the confidence of the top drink order hypothesis is in
the interval [0.1,0.3], the baseline system will simply not
respond, whereas the uncertainty-aware system will try to
clarify the user’s order. In practice, however, it turned out
that often the baseline system would have served the correct
drink right away, whereas the uncertainty-aware system
would clarify the order first. This explains why the baseline
system served more drinks but sometimes the wrong one,
whereas the uncertainty-aware system almost never served
the wrong drink, but sometimes did not serve a drink at all,
because it failed to accumulate sufficient confidence through
clarifications and the user lost patience.

Obviously, the choice of confidence thresholds in selecting
response actions plays a vital role. The thresholds used in this
study (Table I) were determined empirically but somewhat
arbitrarily; it might be that other thresholds would have
been more favourable to the uncertainty-aware system. Since
tuning such thresholds manually is tedious, in future work
we plan to use data-driven methods in which the optimal
thresholds are found automatically.

VII. RELATED WORK

Recent work in HRI and situated multimodal interaction
has seen an increasing interest in handling uncertainty. In
particular, the concept of Value of Information has been
studied as a basis for a system to decide whether to act on
the current evidence from multi-sensory data, or to wait for
additional information [11]. In [12], an approach to selecting
clarification questions is taken, aimed at maximising the
reduction of entropy. Ours is a basic approach uses both
entropy and top hypothesis confidence scores as criteria for
decision making, but does not involve predictions about such
measures of uncertainty. However, our aim is to use the data
collected in our evaluation to automatically learn an optimal
action selection policy as discussed in Section VI-F.

VIII. CONCLUSIONS

In this paper we have presented results from a real
user evaluation of a robot bartender system which handles
uncertainty in speech input by using belief-tracking and
generation of clarification questions. This uncertainty-aware
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system consists of a combination of state estimation and
action selection components in which uncertainty due to
uncertain input is tracked and exploited. In the evaluation this
system was compared to a baseline version that uses standard
speech recognition confidence score thresholds instead of
belief-tracking and no clarifications.

On the positive side, the results suggest that users are
served fewer incorrect drinks when the uncertainty-aware
system is used. However, the uncertainty-aware also often
unnecessarily clarified the user’s order where the baseline
system would have served the correct drink right away. Since
the deployed confidence thresholds for the decision making
process are very hard to tune manually, we plan to use the
data collected in this evaluation to automatically optimise an
action selection policy that takes into account the uncertainty
in the state. Building on previous work on using reinforce-
ment learning for optimising action selection strategies for
multi-user human-robot interaction, a learned strategy will
have incorporated the optimal thresholds automatically.
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