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ABSTRACT
A robot agent existing in the physical world must be able to under-
stand the social states of the human users it interacts with in order to
respond appropriately. We compared two implemented methods for
estimating the engagement state of customers for a robot bartender
based on low-level sensor data: a rule-based version derived from
the analysis of human behaviour in real bars, and a trained version
using supervised learning on a labelled multimodal corpus. We first
compared the two implementations using cross-validation on real
sensor data and found that nearly all classifier types significantly
outperformed the rule-based classifier. We also carried out feature
selection to see which sensor features were the most informative for
the classification task, and found that the position of the head and
hands were relevant, but that the torso orientation was not. Finally,
we performed a user study comparing the ability of the two clas-
sifiers to detect the intended user engagement of actual customers
of the robot bartender; this study found that the trained classifier
was faster at detecting initial intended user engagement, but that the
rule-based classifier was more stable.
Categories and Subject Descriptors: H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information Systems – Evalua-
tion/methodology; I.2.6 [Artificial intelligence]: Learning
Keywords: Social signal processing; supervised learning

1. INTRODUCTION
As robots become integrated into daily life, they must be able to

deal with situations in which socially appropriate interaction is vital.
In such a setting, it is not enough for a robot simply to achieve its
task-based goals; instead, it must also be able to satisfy the social
goals and obligations that arise through interactions with people
in real-world settings. As a result, a robot requires not only the
necessary physical skills to perform objective tasks in the world, but
also the appropriate social skills to understand and respond to the
intentions, desires, and affective states of the people it interacts with.

Building a robot to meet these social interaction goals presents
state-of-the-art challenges to all components of an artificial system.
In this paper, we focus on the task of input processing: the robot
must be able to recognise and interpret multimodal social signals
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A customer attracts the bartender’s attention
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer attracts the bartender’s attention
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 1: A socially aware robot bartender

from its human partners (e.g., gaze, facial expression, and language)
in order to respond appropriately. However, a state-of-the-art input
processing component such as vision or speech recognition pro-
duces a continuous stream of noisy sensor data. In order for this
information to be useful in an interactive system, all of this contin-
uous, noisy, single-channel information must be combined into a
discrete, cross-modal representation to allow the decision-making
components to select appropriate behaviour. This is the task of social
signal processing, a topic that has received increasing attention in
recent years—e.g., see [33] for a recent survey.

This work takes place in the context of a socially aware robot
bartender (Figure 1). The hardware for the robot bartender consists
of two manipulator arms with grippers, mounted to resemble hu-
man arms. Sitting on the main robot torso is an animatronic talking
head capable of producing facial expressions, rigid head motion,
and lip-synchronised synthesised speech. The robot bartender sup-
ports interactions like the one shown in the figure, in which two
customers enter the bar area and each attempt to order a drink from
the bartender. Note that when the second customer appears while
the bartender is engaged with the first customer, the bartender reacts
by telling the second customer to wait, finishing the transaction with
the first customer, and then serving the second customer. In the con-
text of this initial bartending scenario, the main role of social signal
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processing is to estimate desired engagement: using the low-level
sensor data to determine, for each customer in the scene, whether
that customer currently requires attention from the system.

Bohus and Horvitz [5, 6] pioneered the use of data-driven meth-
ods for the task of engagement classification. They trained models
designed to predict user engagement based on information from face
tracking, pose estimation, person tracking, group inference, along
with recognised speech and touch-screen events. After training, their
model was able to predict intended engagement 3–4 seconds in ad-
vance, with a false-positive rate of under 3%. A number of more
recent systems have also used machine learning to address this task.
For example, Li et al. [24] estimated the attentional state of users of
a robot in a public space, combining person tracking, facial expres-
sion recognition, and speaking recognition; the classifier performed
well in informal real-world experiments. Castellano et al. [7] trained
a range of classifiers on labelled data extracted from the logs of
children interacting with a chess-playing robot, where the label indi-
cated either high engagement or low engagement. They found that a
combination of game context-based and turn-based features could
be used to predict user level engagement with an overall accuracy of
approximately 80%. McColl and Nejat [27] automatically classified
the social accessibility of people interacting with their robot based
on their body pose, with four possible levels of accessibility: the
levels estimated by their classifier agreed 86% of the time with those
of an expert coder. MacHardy et al. [26] classified the engagement
states of audience members for an online lecture based on infor-
mation from facial feature detectors; the overall performance was
around on this binary classification task 72%.

Like the above systems, we also make use of data-driven methods
for estimating the desired engagement of customers of the robot
bartender. We begin with a simple, hand-coded, rule-based classifier
based on the observation of human behaviour in real bars. Using
an annotated corpus based on the sensor data gathered from an
initial human-robot experiment, we then train a range of supervised-
learning classifiers and compare them through cross-validation. The
rule-based classifier and the top-performing trained classifier are
then integrated into the full robot bartender system and compared
experimentally through interactions with real human users.

2. SOCIAL STATE RECOGNITION IN THE
ROBOT BARTENDER

The robot bartender incorporates a large number of hardware and
software components; details of the architecture and components are
presented in [10, 14]. The current work takes place in the context
of the Social State Recogniser (SSR), whose primary role is to
turn the continuous stream of sensor messages produced by the low-
level input-processing components into a discrete representation
of the world, the robot, and all entities in the scene, integrating
social, interaction-based, and task-based properties; see [30] for
a formal description of the inputs and outputs of the SSR. The
SSR constantly monitors the state, and publishes a state-update
event to the interaction manager every time there is a change which
might require a response from the system. In addition to storing and
discretising all of the low-level sensor information, the state manager
also infers additional relations that are not directly reported by the
sensors. For example, it fuses information from vision and speech
to determine which user should be assigned a recognised spoken
contribution, and estimates which customers are in a group. Most
importantly in the current scenario—where one of the main tasks
is to manage the engagement of multiple simultaneous customers,
as in Figure 1—the SSR also informs the interaction manager every
time a customer is seeking to engage.

Figure 2: Output of face and hand tracking (image from [10])

To classify desired user engagement, the SSR makes use of low-
level sensor data published on two input channels. The computer
vision system [4, 29] tracks the location, facial expressions, gaze
behaviour, and body language of all people in the scene in real time,
using a set of visual sensors including two calibrated stereo cameras
and a Microsoft Kinect [28] depth sensor. The data from the vision
system is published as frame-by-frame updates multiple times a
second. The other primary input modality in the system is linguistic
[31], combining a speech recogniser with a natural-language parser
to create symbolic representations of the speech from all users.
For speech recognition, we use the Microsoft Speech API together
with a Kinect directional microphone array; incremental hypotheses
are published constantly, and recognised speech with a confidence
above a defined threshold is parsed using a grammar implemented
in OpenCCG [36] to extract the syntactic and semantic information.

Concretely, for this initial experiment in engagement classifica-
tion, we make use of the following data from the input sensors:

• The (x, y, z) coordinates of each customer’s head, left hand,
right hand as reported by the vision system (Figure 2);

• The angle of each customer’s torso in degrees, where 0◦ indi-
cates that the customer is facing directly forwards; and

• An estimate of whether each customer is currently speaking,
derived from the estimated source angle of each speech hy-
pothesis along with the location information from vision.

We have implemented two strategies for estimating desired customer
engagement using the above sensor properties: a classifier that uses
a simple, hand-crafted rule based on the observation of natural inter-
actions in a real bar, and a set of trained classifiers developed using
supervised learning on an annotated human-robot corpus.

The rule-based engagement classifier relies on the signals ob-
served in real bar customers who signalled that they wanted to en-
gage with the bartender [19]: (1) standing close to the bar, and (2)
turning to look at the bartender. These signals were extremely com-
mon in the natural data; and in a follow-up classification experiment
based on still images and videos drawn from the natural data, they
also proved both necessary and sufficient for detecting intended
customer engagement [25]. Based on the details of the bartender
environment, these signals were formalised as a rule-based classifier
that defined a user to be seeking engagement exactly when (1) their
head was less than 30cm from the bar, and (2) they were facing
approximately forwards (absolute torso angle under 10◦).

The trained classifiers, on the other hand, make use of a mul-
timodal corpus derived from the system logs and annotated video
recordings from the first user study of the robot bartender [10]. In



CVR Classifies using regression: the target class is binarised,
and one regression model is built for each class value [11].

IB1 A nearest-neighbour classifier that uses normalised Euclidean
distance to find the closest training instance [2].

J48 Classifies instances using a pruned C4.5 decision tree [32].
JRip Implements the RIPPER propositional rule learner [9].
LibSVM-0 Generates a Support Vector Machine using LIBSVM [8],

with the default γ value of 0.
LibSVM-1 Uses LibSVM with γ = 0.0001.
Logistic Multinomial logistic regression with a ridge estimator [23].
NaiveBayes A Naïve Bayes classifier using estimator classes [20].
ZeroR Baseline classifier; always predicts the most frequent value.

Figure 3: Classifiers considered

particular, the engagement state of each customer visible in the scene
was annotated with one of three levels: NotSeekingEngagement,
SeekingEngagement, and Engaged. For the current classification
task—where we aim to detect users who have not yet engaged with
the system but are seeking to do so—the Engaged state is not rele-
vant, so the corpus was based on the time spans annotated with one
of the other labels. In total, the corpus consisted of 5090 instances:
each instance corresponded to a single frame from the vision system,
and contained the low-level sensor information for a single customer
along with the annotated engagement label. 3972 instances were
in the class NotSeekingEngagement, while 1118 were labelled as
SeekingEngagement. Using the Weka data mining toolkit [16], we
then trained a range of supervised-learning classifiers on this corpus,
using a set of classifiers (Figure 3) designed to provide good cov-
erage of different classification styles, based on those listed in the
Weka primer [1]. Since the performance of the default (Radial Basis
Function) kernel used by LIBSVM depends heavily on the value of
the γ parameter, which controls the width of the kernel [18], we in-
cluded two versions of this classifier: one using the default value of
0 (LibSVM-0), and one where γ was set to 0.0001 (LibSVM-1). All
other classifiers were used in the default configuration as provided
by Weka version 3.6.8.

3. OFFLINE EVALUATION
As a first step, we carried out an offline experiment to compare the

performance of the trained classifiers with each other and with that
of the rule-based classifier. This study provides an initial indication
of which classification strategies are and are not suitable for the type
of data included in the training corpus, and also gives an indication
of the performance of the rule-based classifier on the same data.

3.1 Cross-validation
We compared the performance of all of the classifiers through

10-fold cross-validation on the training corpus. For each classifier,
we computed the following measures: the overall classification accu-
racy, the area under the ROC curve (AUC), along with the weighted
precision, recall, and F measure. Note that the baseline accuracy
score for this binary classification task is the size of the larger class
(NotSeekingEngagement): 3972/5090 = 0.78. The results of this
evaluation are presented in Table 1, sorted by accuracy; the overall
performance of the hand-coded rule on the full training corpus is
also included. The groupings in Table 1 reflect differences among
the accuracy scores that were significant at the p < 0.01 level on
a paired T test based on 10 independent cross-validation runs. In
other words, the IB1 classifier had the highest performance on this
measure; the LibSVM-1, J48, CVR and JRip classifiers were statis-
tically indistinguishable from each other; the LibSVM-0, Logistic,
and ZeroR classifiers were again indistinguishable (these classifiers
generally labelled all instances as NotSeekingEngagement); while
the NaiveBayes classifier and the hand-coded rule had the lowest

Classifier Accuracy AUC Precision Recall F

IB1 0.960 0.932 0.957 0.958 0.957

LibSVM-1 0.931 0.871 0.931 0.932 0.930
J48 0.924 0.919 0.925 0.925 0.925
CVR 0.921 0.960 0.911 0.912 0.912
JRip 0.911 0.868 0.913 0.914 0.913

LibSVM-0 0.790 0.521 0.830 0.790 0.706
Logistic 0.780 0.739 0.727 0.781 0.710
ZeroR 0.780 0.500 0.609 0.780 0.684

NaiveBayes 0.669 0.656 0.726 0.662 0.685
Hand-coded rule 0.655 na 0.635 0.654 0.644

Table 1: Cross-validation results, grouped by accuracy
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Figure 4: ROC curves for SeekingEngagement class

overall accuracy by a significant margin. Figure 4 shows the ROC
curves for all classifiers based on the SeekingEngagement class: as
expected, the curves for all of the high-performing classifiers are
close to optimal, while those for the other classifiers are closer to
the chance performance of the baseline ZeroR classifier.

3.2 Attribute selection
The above cross-validation results made use of the full set of

sensor attributes included in the corpus; however, it is likely that not
all of the sensor data is equally informative for the classification task.
To get a better assessment of which sensor data was most relevant,
we carried out two forms of attribute selection. We first determined
the sensor attributes that were the most informative for each of the
individual classifiers, using a wrapper method [22] to explore the
relationship between the algorithm and the training data. We then
analysed the corpus as a whole using Correlation-Based Feature
Selection (CBF) [17], a general-purpose selection method known to
have good overall performance [15].

Face HandL HandR Ori Spk Acc
x y z x y z x y z

IB1 • • • • • • • • 0.963
LibSVM-1 • • • • 0.938

J48 • • • • • • • • • 0.932
CVR • • • • • • • • • 0.926
JRip • • • • • • • • 0.921

LibSVM-0 • • • 0.830
Logistic 0.780

ZeroR 0.780
NaiveBayes • • • • 0.786

Hand-coded rule • • 0.655

CBF • • • • • •

Table 2: Output of attribute selection



The results of this attribute selection process are shown in Ta-
ble 2. The main body of the table indicates with a bullet (•) the
attributes that were determined to be most informative for each of
the classifiers; for reference, the last row shows the two features
that were used by the rule-based classifier (z face location and body
orientation). The final Acc column shows the cross-validation ac-
curacy of a classifier making use only of the selected attributes. As
can be seen, most of the high-performing classifiers made use of
the full 3D location of the customer’s head, along with the loca-
tion of the hands and the “speaking” flag. The accuracy of most
classifiers was very slightly better with the classifier-specific at-
tribute subset when compared to the results from Table 1, but in
no cases was this improvement statistically significant. The bottom
row of the table shows the attributes that were found to be most
informative by the CBF selector, which were similar to those used
by the high-performing classifiers: namely, the full 3D position of
the customer’s head, along with some of the hand coordinates. The
selected attributes correspond very well with prior results in our
human-human interaction studies [12, 13].

It is notable that body orientation—which was one of the two
main engagement-seeking signals found in the human-human data,
and which was found to be necessary for making offline engagement
judgements based on that same data—was not determined to be
informative by any of the attribute selectors. This is most likely due
to the performance of the initial vision system that was used to create
the corpus data: the body orientation was often either incorrectly
detected or not detected at all, making this attribute unreliable for
engagement classification. The unreliability of this signal in the
corpus data likely also affected the cross-validation performance of
the hand-coded rule, which had lower accuracy than the baseline
ZeroR classifier. Also, the right hand was generally found to be more
informative than the left: this is probably because, assuming that
most customers were right-handed, they would have used this hand
more often, thus providing more useful vision data.

4. ONLINE EVALUATION
The offline results presented in the preceding section are promis-

ing: in cross-validation against real sensor data, the top-performing
IB1 classifier correctly labelled over 96% of the instances. However,
this study was based on frame-by-frame accuracy; and as Bohus
and Horvitz [6] point out, for this sort of classifier, a better run-time
evaluation is one that measures the errors per person, not per frame.

As a step towards such an evaluation, we therefore integrated
the top-performing trained classifier into the robot bartender’s So-
cial State Recogniser and tested its performance against that of the
rule-based classifier through an online evaluation, with human par-
ticipants playing the role of customers for the robot bartender. This
study used the drink-ordering scenario illustrated in Figure 1: two
customers approached the bar together and attempted to engage with
the bartender, and—if successful—each ordered a drink. The bar-
tender was static until approached by a customer, and did not engage
in any interaction other than that required for the target scenario.

The robot bartender used in this study was similar to the one used
in the initial user evaluation [10], but with updates to all components:
in particular, the vision system incorporated an improved method
of estimating torso orientation [29]. For half of the trials, the SSR
used the rule-based engagement classifier, while for the rest, it in-
stead used the trained IB1 classifier. After each trial, the participants
answered a short questionnaire regarding their experience of inter-
acting with the bartender. In addition to the questionnaire, we also
gathered a range of other measures assessing the performance of the
two classifiers based on data gathered from the system log files.

4.1 Participants
41 participants (29 male), drawn from university departments

outside the robotics group involved in developing the bartender, took
part in this experiment. The mean age of the participants was 27.8
(range 16–50), and their mean self-rating of experience with human-
robot interaction systems was 2.51 on a scale of 1–5. Participants
were given the choice of carrying out the experiment in German or
English; 27 chose to use German, while 14 chose English.

4.2 Scenario
The study took place in a lab, with lighting and background noise

controlled as far as possible. In each trial, the participant approached
the bartender together with a confederate, with both customers seek-
ing to engage with the bartender and order a drink (as in Figure 1).
Each participant was given a list of the possible drinks that could
be ordered (Coke or lemonade), but was not given any further in-
structions. The robot was static until approached by a customer, and
the confederate did not attempt to speak at the same time as the
participant. After each interaction was completed, the participant
completed a short computer-based questionnaire. Each participant
carried out two interactions, with the order and selection of classi-
fiers counter-balanced across participants.

4.3 Dependent measures
We gathered two classes of dependent measures: objective mea-

sures derived from the system logs, and subjective measures gathered
from the questionnaire.

4.3.1 Objective measures
For this study, we computed several objective measures which

specifically address the interactive performance of the two engage-
ment classifiers. Note that the ground-truth data about the partici-
pants’ actual behaviour is not yet available, as the videos from this
study have not been annotated. However, based on the scenario (Fig-
ure 1), it is reasonably safe to assume that the majority of customers
were seeking to engage with the bartender as soon as they appeared
in the scene, and that the participants behaved similarly in the two
classifier conditions. We collected the following objective measures:

Detection rate How many of the customers detected in the scene
were classified as seeking to engage. Under the above assump-
tions, this measure assesses the accuracy of the two classifiers.

Initial detection time The average delay between a customer’s ini-
tial appearance in the visual scene and the time that they were
considered to be seeking engagement. Again, under the as-
sumption that all participants behaved similarly, this measure
assesses the relative responsiveness of the two engagement
classifiers.

System response time The average delay between a customer’s
initial appearance in the visual scene and the time that the
system generated a response to that customer. Since the sys-
tem would only respond to customers that were detected as
seeking engagement, this is a secondary measure of classi-
fier responsiveness, but one that is more likely to have been
noticed by the participants.

Drink serving time The average delay between a customer’s initial
appearance in the visual scene and the time that the system
successfully served them a drink. Since serving a drink ulti-
mately depends on successful engagement between the cus-
tomer and the bartender, this is an even more indirect measure
of responsiveness.



Number of engagement changes The average number of times that
the classifier changed its estimate of a user’s engagement-
seeking state over the course of an entire experiment run. In
the experimental scenario, only the initial detection affected
the system behaviour: as soon as a customer was determined
to be seeking engagement, the system would engage with
them and the interaction would continue. However, the en-
gagement classifier remained active throughout a trial, so this
measure tracks the performance over time. Although the ac-
tual behaviour of the experimental participants is not known,
we assume that it was similar across the two groups, so any
difference on this measure indicates a difference between the
classifiers.

4.3.2 Subjective measures
After each interaction, the participant filled out the short electronic

questionnaire shown in Figure 5; a German translation was also
available for participant doing the experiment in German.

1. Did you successfully order a drink from the bartender? [Y/N]

Please state your opinion on the following statements:
[ 1:strongly disagree; 2:disagree; 3:slightly disagree;
4:slightly agree; 5:agree; 6:strongly agree ]

2. It was easy to attract the bartender’s attention [1-6]

3. The bartender understood me well [1-6]

4. The interaction with the bartender felt natural [1-6]

5. Overall, I was happy about the interaction [1-6]

Figure 5: Post-interaction questionnaire

4.4 Results
A total of 81 interactions were recorded in this study. However,

due to technical issues with the system, only 58 interactions could be
analysed, involving data from 37 of the 41 subjects: 26 interactions
using the rule-based classifier, and 32 using the trained IB1 classifier.
All results below are based on those 58 interactions.

4.4.1 Objective measures
Table 3 summarises the objective results, divided by the classifier

type. Overall, the detection rate was very high, with 98% of all
customers determined to be seeking engagement, generally within
4–5 seconds (and, in many cases, in under one second). The robot
acknowledged a customer on average about 6–7 seconds after they
first became visible, and a customer received a drink about a minute
after their initial appearance—note that this last number includes
the 20 seconds taken by the robot arm to physically grasp and hand
over the drink. Over the course of an entire interaction, a customer’s
estimated engagement changed an average of about 13 times.

Each study participant took part in two interactions; however, as
mentioned above, due to technical issues we could not analyse the
full paired data. Instead, we analysed the data using a linear mixed
model [3, 35], treating the participant identifier as a random factor,
with the classification strategy and all demographic features included
as fixed factors. This analysis found that the effect of the classifi-
cation strategy on the number of changes in estimated engagement
was significant at the p < 0.05 level; however, while the numbers
in Table 3 suggest that the trained classifier was somewhat more
responsive, none of those differences were found to be significant.

Several demographic factors also affected the objective results:
the participants who carried out the experiment in German took sig-
nificantly longer to receive their drinks than did those who interacted

Measure Rule (sd) Trained (sd)

Detection rate 0.98 (0.10) 0.98 (0.09)
Time to first detection 5.4 (7.9) 4.0 (9.7)
Time to system response 7.0 (7.9) 6.4 (10.4)
Time to drink served 62.2 (22.2) 53.7 (14.0)
Num. engagement changes 12.0 (10.2) 17.6 (7.6)

Table 3: Objective results (significant difference highlighted)

Question Rule (sd) Trained (sd)

Success 0.88 (0.32) 0.88 (0.33)
Attention 4.1 (1.6) 4.1 (1.8)
Understand 4.0 (1.8) 4.0 (1.8)
Natural 3.0 (1.3) 2.9 (1.6)
Overall 4.0 (1.6) 3.7 (1.7)

Table 4: Subjective results (all differences n.s.)

in English (48.1 vs. 62.0 seconds; p < 0.05), while the classifiers
changed their estimate of the female participants’ engagement state
significantly more often over the course of an interaction (21.1 vs.
13.3 times; also p < 0.05).

4.4.2 Subjective measures
The results from the subjective questionnaire are summarised

in Table 4. In general, the participants gave the system reasonably
high scores on perceived success, ease of attracting attention, under-
standability, and overall satisfaction, with somewhat lower scores
for naturalness. The linear mixed model found that the choice of
classifier had no significant effect on any of these measures. How-
ever, as in the preceding section, the demographic features of the
participants also had a significant effect on the subjective results.
There were two main effects in the models: the perceived success
was significantly lower for participants with more knowledge of
human-robot interaction (R2 = 0.13, p < 0.005), while the partici-
pants who interacted in German gave significantly lower answers to
the final, overall item on the questionnaire (3.5 vs. 4.5; p < 0.05).

We also carried out a PARADISE-style [34] stepwise regression
to determine which objective features had the greatest effect on the
participants’ subjective responses. The details of this analysis are
presented in [21]; in summary, all of the subjective responses were
positively affected by the objective task success (i.e., the number of
drinks served); the number of attempted user turns discarded due
to low ASR confidence negatively affected most of the subjective
questions; while various measures of dialogue efficiency (such as
the system response time and the time taken to serve drinks) also
had a significant impact, with longer interactions generally resulting
in lower subjective scores.

4.5 Discussion
The objective results of this study indicate that the system was

generally successful both at detecting customers who wanted to
engage with it and at serving their drinks: despite the minimal in-
structions given to the participants, the objective success rate was
very high. The choice between the two classification strategies had
one main objective effect: the trained classifier changed its estimate
of a customer’s engagement state more frequently than did the rule-
based classifier. While the trained classifier also appears to have
been more responsive than the rule-based classifier, there was no sig-
nificant difference found. The choice of classifier had no significant
effect on any of the responses on the subjective questionnaire.

The demographics had several effects on the results. First, the
participants who used German took significantly longer to receive



their drink, and also gave lower overall ratings to the system. We
suspect that this was likely due to the decreased performance of the
Kinect German language model, which was added to the Speech
API much more recently than the English recognition: on average,
nearly twice as many attempted user turns were discarded due to
low confidence for the German participants (4.1 per interaction) as
for the English participants (2.2). Also, both classifiers’ estimate
of customer engagement changed more often over the course of a
trial for the female participants than for the male participants: we
hypothesise that this may be due to the vision system having been
trained primarily on images of male customers. Finally, participants
with more knowledge of human-robot interaction rated the perceived
success significantly lower; note that perceived success was also
significantly correlated with actual success as measured by number
of drinks served (R2 = 0.176, p < 0.001).

Note that all of the objective measures are based only on the
data from the log files, along with some underlying assumptions
about user behaviour based on the scenario given to the participants
(Figure 1): namely, we assume that all customers were seeking to
engage with the bartender from the moment that they appeared, and
that the behaviour of the participants in the two conditions did not
differ over the course of an interaction. The difference in classifier
stability between male and female participants suggests that this
assumption may not hold in practice; however, to assess the true
performance of the classifiers, we require ground-truth data as to
the actual engagement-seeking behaviour of the customers in the
scene. Such ground-truth information will also allow us to analyse
the impact of the demographic factors more directly. For this reason,
we are currently annotating the video recordings from this study to
add that information, and will carry out further analysis once the
annotation is completed.

5. CONCLUSIONS AND FUTURE WORK
We have presented the role of social state recognition in the con-

text of a socially aware robot bartender, and have described two
approaches to the particular task of estimating customers’ engage-
ment intentions: the first version used a hand-coded rule based on
findings from annotated human behaviour in real bars, while for the
second version, we trained a range of supervised-learning classifiers
using a multimodal corpus based on user interactions with the initial
system. In a cross-validation study using real sensor data, nearly
all of the classifiers significantly outperformed the hand-coded rule.
The best-performing classifier based on accuracy was the instance-
based IB1 classifier, which had an overall accuracy of 0.960 in
frame-based cross-validation. When we carried out feature selection,
it was found that the most informative features were the 3D position
of the customer’s head, along with some of the coordinates of their
hands; body orientation—which was one of the two features used
by the rule-based classifier—was actually not informative based on
the corpus data, which we hypothesise was due to the noisiness of
this signal in the vision data used for training.

In a user study comparing the rule-based classifier with the trained
IB1 classifier in the context of the full robot bartender system, the
trained classifier changed its estimate of the customers’ engagement
state significantly more often over the course of an interaction, sug-
gesting that it is less stable; however, until the ground truth data is
available of user behaviour, it is not clear which of the two classifiers
actually performed better on this measure. The trained classifier also
detected intended user engagement somewhat more quickly, leading
to a mild (non-significant) improvement in system responsiveness.
The choice of classifier did not have a significant impact on the
users’ subjective opinions of the robot bartender. Several demo-
graphic factors did have an impact on the study results, including the

participants’ gender and experience with human-robot interaction
systems, along with the language in which they chose to interact.

This initial study has confirmed that, as in other similar domains,
data-driven techniques are a suitable mechanism for social signal
processing for the robot bartender. However, this study has several
limitations. First, it addressed only a single, simple, binary classifica-
tion task; also, it considered only a subset of the available properties
from the input sensors, and did not make any use of the interaction
history. Also, all of the participants in the user evaluation were in-
structed to seek to engage with the bartender from the start of the
interaction, so we did not test the classifiers with any negative exam-
ples. Finally, the objective measures are based purely on the sensor
estimates from the log files, rather than on the actual user behaviour:
for example, we do not know either the actual engagement actions
of each user or the actual speech that they used.

The immediate next task in this work is to annotate the user
behaviour in the video recordings of the interactions from this study:
this will allow more detailed objective measures to be gathered,
and can also form the basis of a more sophisticated multimodal
corpus incorporating state features such as the hypotheses from
the speech recogniser and the history of the interaction, along with
additional vision properties such as the customers’ face orientations,
facial expressions, and body gestures. The labels in this corpus
will also incorporate richer high-level customer features such as
group membership; new models based on these corpora will be
trained and integrated into the system, and their performance will
be assessed through further user evaluations. In future user studies,
we will also take care to control demographic factors such as gender
and language to ensure that the evaluation gives an assessment of
classifier performance that is as accurate as possible.
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